List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2884842/publications.pdf

Version: 2024-02-01

IENS KATTOE

#	Article	IF	CITATIONS
1	Global effects of land use on local terrestrial biodiversity. Nature, 2015, 520, 45-50.	27.8	2,669
2	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	27.8	2,022
3	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
4	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
5	Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 2007, 147, 209-232.	4.8	744
6	Plant functional traits have globally consistent effects on competition. Nature, 2016, 529, 204-207.	27.8	655
7	Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for globalâ€scale terrestrial biosphere models. Global Change Biology, 2009, 15, 976-991.	9.5	551
8	Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century?. Climate Dynamics, 2007, 29, 565-574.	3.8	547
9	The emergence and promise of functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13690-13696.	7.1	525
10	Abiotic drivers and plant traits explain landscapeâ€scale patterns in soil microbial communities. Ecology Letters, 2012, 15, 1230-1239.	6.4	511
11	Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell and Environment, 2007, 30, 1176-1190.	5.7	459
12	Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 2013, 16, 1045-1053.	6.4	452
13	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
14	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	7.8	397
15	The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 2020, 6, .	10.3	377
16	A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist, 2017, 213, 22-42.	7.3	365
17	Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	7.3	350
18	Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 2017, 20, 539-553.	6.4	348

#	Article	IF	CITATIONS
19	The relationship of leaf photosynthetic traits – <i>V</i> _{cmax} and <i>J</i> _{max} – to leaf nitrogen, leaf phosphorus, and specific leaf area: a metaâ€analysis and modeling study. Ecology and Evolution, 2014, 4, 3218-3235.	1.9	338
20	A global method for calculating plant <scp>CSR</scp> ecological strategies applied across biomes worldâ€wide. Functional Ecology, 2017, 31, 444-457.	3.6	330
21	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	2.2	323
22	Improving land surface models with FLUXNET data. Biogeosciences, 2009, 6, 1341-1359.	3.3	308
23	Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology and Evolution, 2018, 2, 1579-1587.	7.8	296
24	Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences, 2012, 9, 3547-3569.	3.3	295
25	Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecology Letters, 2012, 15, 831-840.	6.4	284
26	Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends in Ecology and Evolution, 2011, 26, 249-259.	8.7	268
27	A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nature Communications, 2014, 5, 4087.	12.8	260
28	Linking plant and ecosystem functional biogeography. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13697-13702.	7.1	255
29	A global Fineâ€Root Ecology Database to address belowâ€ground challenges in plant ecology. New Phytologist, 2017, 215, 15-26.	7.3	250
30	Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biology and Biochemistry, 2007, 39, 715-726.	8.8	248
31	Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agricultural and Forest Meteorology, 2008, 148, 821-838.	4.8	248
32	Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Annals of Botany, 2014, 114, 1-16.	2.9	240
33	Diversity increases carbon storage and tree productivity in <scp>S</scp> panish forests. Global Ecology and Biogeography, 2014, 23, 311-322.	5.8	237
34	Monitoring plant functional diversity from space. Nature Plants, 2016, 2, 16024.	9.3	221
35	Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling. Global Change Biology, 2005, 11, 1333-1351.	9.5	212
36	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	2.2	185

#	Article	IF	CITATIONS
37	Towards global data products of Essential Biodiversity Variables on species traits. Nature Ecology and Evolution, 2018, 2, 1531-1540.	7.8	163
38	Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Global Change Biology, 2015, 21, 2711-2725.	9.5	162
39	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	7.1	159
40	Testing the environmental filtering concept in global drylands. Journal of Ecology, 2017, 105, 1058-1069.	4.0	156
41	Global photosynthetic capacity is optimized to the environment. Ecology Letters, 2019, 22, 506-517.	6.4	153
42	An integrated framework of plant form and function: the belowground perspective. New Phytologist, 2021, 232, 42-59.	7.3	153
43	A synthesis of tree functional traits related to droughtâ€induced mortality in forests across climatic zones. Journal of Applied Ecology, 2017, 54, 1669-1686.	4.0	148
44	Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environmental Reviews, 2016, 24, 164-186.	4.5	146
45	Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology and Evolution, 2020, 4, 294-303.	7.8	144
46	Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography, 2014, 23, 1046-1057.	5.8	136
47	<scp>BHPMF</scp> – a hierarchical <scp>B</scp> ayesian approach to gapâ€filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, 2015, 24, 1510-1521.	5.8	132
48	Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals. Agricultural and Forest Meteorology, 2008, 148, 38-50.	4.8	128
49	Are traitâ€based species rankings consistent across data sets and spatial scales?. Journal of Vegetation Science, 2014, 25, 235-247.	2.2	127
50	Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis. Biogeosciences, 2013, 10, 5497-5515.	3.3	122
51	Relationships between net primary productivity and forest stand age in U.S. forests. Global Biogeochemical Cycles, 2012, 26, .	4.9	121
52	Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 2018, 5, 728-739.	9.5	121
53	Phylogenetic and functional characteristics of household yard floras and their changes along an urbanization gradient. Ecology, 2012, 93, S83.	3.2	115
54	Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 2016, 9, 2415-2440.	3.6	115

#	Article	IF	CITATIONS
55	Foliar temperature acclimation reduces simulated carbon sensitivity to climate. Nature Climate Change, 2016, 6, 407-411.	18.8	114
56	Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology, 2017, 105, 298-309.	4.0	114
57	The Coordination of Leaf Photosynthesis Links C and N Fluxes in C3 Plant Species. PLoS ONE, 2012, 7, e38345.	2.5	113
58	Influences of observation errors in eddy flux data on inverse model parameter estimation. Biogeosciences, 2008, 5, 1311-1324.	3.3	112
59	Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytologist, 2018, 219, 574-587.	7.3	107
60	Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences, 2012, 9, 565-576.	3.3	105
61	A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sensing of Environment, 2018, 218, 69-88.	11.0	104
62	The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.	27.8	99
63	Future global productivity will be affected by plant trait response to climate. Scientific Reports, 2018, 8, 2870.	3.3	95
64	Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Clobal Change Biology, 2015, 21, 3074-3086.	9.5	94
65	The results of biodiversity–ecosystem functioning experiments are realistic. Nature Ecology and Evolution, 2020, 4, 1485-1494.	7.8	93
66	Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. Journal of Biogeography, 2018, 45, 895-916.	3.0	92
67	Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5229-5234.	7.1	90
68	Global root traits (GRooT) database. Global Ecology and Biogeography, 2021, 30, 25-37.	5.8	90
69	Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution, 2022, 6, 36-50.	7.8	89
70	The BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences and challenges. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1414-1426.	3.0	86
71	Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nature Ecology and Evolution, 2017, 1, 48.	7.8	85
72	Connecting the Green and Brown Worlds. Advances in Ecological Research, 2013, 49, 69-175.	2.7	84

#	Article	IF	CITATIONS
73	Modes of functional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 2016, 25, 251-262.	5.8	83
74	OptIC project: An intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models. Journal of Geophysical Research, 2007, 112, .	3.3	82
75	Effect of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biology and Biochemistry, 2009, 41, 1996-2001.	8.8	81
76	Biodiversity data integration—the significance of data resolution and domain. PLoS Biology, 2019, 17, e3000183.	5.6	81
77	Feedback of carbon and nitrogen cycles enhances carbon sequestration in the terrestrial biosphere. Global Change Biology, 2011, 17, 819-842.	9.5	80
78	Predicting invertebrate herbivory from plant traits: evidence from 51 grassland species in experimental monocultures. Ecology, 2012, 93, 2674-2682.	3.2	80
79	Simple measures of climate, soil properties and plant traits predict nationalâ€scale grassland soil carbon stocks. Journal of Applied Ecology, 2015, 52, 1188-1196.	4.0	79
80	A generic structure for plant trait databases. Methods in Ecology and Evolution, 2011, 2, 202-213.	5.2	78
81	Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Global Ecology and Biogeography, 2018, 27, 310-321.	5.8	77
82	Global Estimation of Biophysical Variables from Google Earth Engine Platform. Remote Sensing, 2018, 10, 1167.	4.0	75
83	Global convergence in leaf respiration from estimates of thermal acclimation across time and space. New Phytologist, 2015, 207, 1026-1037.	7.3	74
84	Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecology Letters, 2018, 21, 31-42.	6.4	74
85	Taxonomic and functional turnover are decoupled in European peat bogs. Nature Communications, 2017, 8, 1161.	12.8	73
86	A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes. Geoscientific Model Development, 2015, 8, 2035-2065.	3.6	71
87	Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a metaâ€analysis. New Phytologist, 2017, 213, 128-139.	7.3	69
88	Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. New Phytologist, 2018, 218, 1462-1477.	7.3	67
89	Improving the predictability of global CO ₂ assimilation rates under climate change. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	65
90	Improving ecosystem productivity modeling through spatially explicit estimation of optimal light use efficiency. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1755-1769.	3.0	64

#	Article	IF	CITATIONS
91	Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos, 2015, 124, 1674-1685.	2.7	64
92	Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Global Change Biology, 2020, 26, 2573-2583.	9.5	64
93	Climate―and successional―elated changes in functional composition of European forests are strongly driven by tree mortality. Global Change Biology, 2017, 23, 4162-4176.	9.5	62
94	Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nature Ecology and Evolution, 2021, 5, 1123-1134.	7.8	62
95	Plant trait analysis delivers an extensive list of potential green roof species for Mediterranean France. Ecological Engineering, 2014, 67, 48-59.	3.6	59
96	A global traitâ€based approach to estimate leaf nitrogen functional allocation from observations. Ecological Applications, 2017, 27, 1421-1434.	3.8	59
97	Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nature Ecology and Evolution, 2018, 2, 1808-1817.	7.8	59
98	Available and missing data to model impact of climate change on European forests. Ecological Modelling, 2020, 416, 108870.	2.5	58
99	Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. Journal of Ecology, 2019, 107, 2197-2210.	4.0	57
100	Sampling Date, Leaf Age and Root Size: Implications for the Study of Plant C:N:P Stoichiometry. PLoS ONE, 2013, 8, e60360.	2.5	56
101	Functional diversity underlies demographic responses to environmental variation in European forests. Global Ecology and Biogeography, 2017, 26, 128-141.	5.8	56
102	Robustness of trait connections across environmental gradients and growth forms. Global Ecology and Biogeography, 2019, 28, 1806-1826.	5.8	56
103	Inferring plant functional diversity from space: the potential of Sentinel-2. Remote Sensing of Environment, 2019, 233, 111368.	11.0	56
104	Future challenges of representing land-processes in studies on land-atmosphere interactions. Biogeosciences, 2012, 9, 3587-3599.	3.3	56
105	Wholeâ€plant trait spectra of North American woody plant species reflect fundamental ecological strategies. Ecosphere, 2013, 4, 1-28.	2.2	52
106	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
107	Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Global Ecology and Biogeography, 2020, 29, 992-1007.	5.8	51
108	Modeling the vertical soil organic matter profile using Bayesian parameter estimation. Biogeosciences, 2013, 10, 399-420.	3.3	50

#	Article	IF	CITATIONS
109	Estimating themissing species bias in plant trait measurements. Journal of Vegetation Science, 2015, 26, 828-838.	2.2	49
110	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	5.8	49
111	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	5.8	49
112	Late Quaternary climate legacies in contemporary plant functional composition. Global Change Biology, 2018, 24, 4827-4840.	9.5	48
113	A plant growth form dataset for the New World. Ecology, 2016, 97, 3243-3243.	3.2	44
114	Predicting invertebrate herbivory from plant traits: Polycultures show strong nonadditive effects. Ecology, 2013, 94, 1499-1509.	3.2	39
115	Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana. Biogeosciences, 2013, 10, 789-802.	3.3	38
116	Vegetation ecology meets ecosystem science: Permanent grasslands as a functional biogeography case study. Science of the Total Environment, 2015, 534, 43-51.	8.0	38
117	Predicting habitat affinities of plant species using commonly measured functional traits. Journal of Vegetation Science, 2017, 28, 1082-1095.	2.2	38
118	Multi-scale phylogenetic structure in coastal dune plant communities across the globe. Journal of Plant Ecology, 2014, 7, 101-114.	2.3	37
119	The imprint of plants on ecosystem functioning: A data-driven approach. International Journal of Applied Earth Observation and Geoinformation, 2015, 43, 119-131.	2.8	37
120	Sensitivity of communityâ€level trait–environment relationships to data representativeness: A test for functional biogeography. Global Ecology and Biogeography, 2017, 26, 729-739.	5.8	37
121	Plant community structure and nitrogen inputs modulate the climate signal on leaf traits. Global Ecology and Biogeography, 2017, 26, 1138-1152.	5.8	37
122	Fame, glory and neglect in meta-analyses. Trends in Ecology and Evolution, 2011, 26, 493-494.	8.7	36
123	Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Science China Life Sciences, 2019, 62, 1047-1057.	4.9	35
124	Phylogenetic measures of plant communities show longâ€ŧerm change and impacts of fire management in tallgrass prairie remnants. Journal of Applied Ecology, 2015, 52, 1638-1648.	4.0	34
125	The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants. Journal of Biomedical Semantics, 2016, 7, 65.	1.6	34
126	Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes. Global Change Biology, 2016, 22, 2178-2197.	9.5	33

#	Article	IF	CITATIONS
127	Inter- and intraspecific variation in leaf economic traits in wheat and maize. AoB PLANTS, 2018, 10, ply006.	2.3	31
128	Constraining a land-surface model with multiple observations by application of the MPI-Carbon Cycle Data Assimilation System V1.0. Geoscientific Model Development, 2016, 9, 2999-3026.	3.6	30
129	Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecology and Evolution, 2016, 6, 7352-7366.	1.9	29
130	Global relationships in tree functional traits. Nature Communications, 2022, 13, .	12.8	29
131	Of carrots and sticks. Nature Geoscience, 2014, 7, 778-779.	12.9	28
132	Variation in trait tradeâ€offs allows differentiation among predefined plant functional types: implications for predictive ecology. New Phytologist, 2016, 209, 563-575.	7.3	28
133	Biogeographic patterns of multi-element stoichiometry of <i>Quercus variabilis</i> leaves across China. Canadian Journal of Forest Research, 2015, 45, 1827-1834.	1.7	24
134	A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology, 2019, 100, e02812.	3.2	24
135	Ecophysiological Characteristics of Mature Trees and Stands - Consequences for Old-Growth Forest Productivity. Ecological Studies, 2009, , 57-79.	1.2	24
136	A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.	5.2	22
137	Taxonomic and functional diversity in Mediterranean pastures: insights on the biodiversity–productivity tradeâ€off. Journal of Applied Ecology, 2016, 53, 1575-1584.	4.0	21
138	Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and Biogeography, 2020, 29, 281-294.	5.8	21
139	Harmonizing, annotating and sharing data in biodiversity-ecosystem functioning research. Methods in Ecology and Evolution, 2013, 4, 201-205.	5.2	19
140	Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecology Letters, 2021, 24, 970-983.	6.4	19
141	Functional Resilience against Climate-Driven Extinctions – Comparing the Functional Diversity of European and North American Tree Floras. PLoS ONE, 2016, 11, e0148607.	2.5	19
142	Putting vascular epiphytes on the traits map. Journal of Ecology, 2022, 110, 340-358.	4.0	19
143	The relationship of woody plant size and leaf nutrient content to largeâ€scale productivity for forests across the Americas. Journal of Ecology, 2019, 107, 2278-2290.	4.0	18
144	Functional biogeography of Neotropical moist forests: Trait–climate relationships and assembly patterns of tree communities. Global Ecology and Biogeography, 2021, 30, 1430-1446.	5.8	18

#	Article	IF	CITATIONS
145	High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
146	Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant and Soil, 2013, 371, 53-66.	3.7	17
147	Uncertainty Quantified Matrix Completion Using Bayesian Hierarchical Matrix Factorization. , 2014, , .		16
148	Assessing Impacts of Plant Stoichiometric Traits on Terrestrial Ecosystem Carbon Accumulation Using the E3SM Land Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001841.	3.8	14
149	Estimating Basal Area of Spruce and Fir in Post-fire Residual Stands in Central Siberia Using Quickbird, Feature Selection, and Random Forests. Procedia Computer Science, 2013, 18, 2386-2395.	2.0	13
150	Dispersal limitation determines largeâ€scale dark diversity in Central and Northern Europe. Journal of Biogeography, 2017, 44, 1770-1780.	3.0	13
151	Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests. Ecological Modelling, 2012, 233, 90-103.	2.5	9
152	News on intraâ€specific trait variation, species sorting, and optimality theory for functional biogeography and beyond. New Phytologist, 2020, 228, 6-10.	7.3	9
153	Chronic fertilization and irrigation gradually and increasingly restructure grassland communities. Ecosphere, 2019, 10, e02625.	2.2	8
154	LTâ€Brazil: A database of leaf traits across biomes and vegetation types in Brazil. Global Ecology and Biogeography, 2021, 30, 2136-2146.	5.8	8
155	Biodiversity Data Integration: The significance of data resolution and domain. Biodiversity Information Science and Standards, 0, 3, .	0.0	8
156	Physically, physiologically and conceptually hidden: Improving the description and communication of seed persistence. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 257, 151413.	1.2	7
157	Comprehensive leaf size traits dataset for seven plant species from digitised herbarium specimen images covering more than two centuries. Biodiversity Data Journal, 2021, 9, e69806.	0.8	7
158	Long-term leaf C:N ratio change under elevated CO2 and nitrogen deposition in China: Evidence from observations and process-based modeling. Science of the Total Environment, 2021, 800, 149591.	8.0	7
159	Nutritional constraints on brain evolution: Sodium and nitrogen limit brain size. Evolution; International Journal of Organic Evolution, 2020, 74, 2304-2319.	2.3	6
160	PhenoSpace: A Shiny application to visualize trait data in the phenotypic space of the global spectrum of plant form and function. Ecology and Evolution, 2021, 11, 1526-1534.	1.9	6
161	Increasing Functional Diversity in a Global Land Surface Model Illustrates Uncertainties Related to Parameter Simplification. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	6
162	Corrigendum to GarcÃaâ€Palacios <i>etÂal</i> . (). Ecology Letters, 2013, 16, 1418-1418.	6.4	5

#	Article	IF	CITATIONS
163	Nitrogen productivity and allocation responses of 12 important tree species to increased CO2. Trees - Structure and Function, 2017, 31, 617-621.	1.9	4
164	Hardscape floristics: Functional and phylogenetic diversity of parkingâ€lot plants. Applied Vegetation Science, 2019, 22, 573-581.	1.9	3
165	Updated respiration routines alter spatio-temporal patterns of carbon cycling in a global land surface model. Environmental Research Letters, 2021, 16, 104015.	5.2	3
166	A Semantic Web Faceted Search System for Facilitating Building of Biodiversity and Ecosystems Services. Lecture Notes in Computer Science, 2014, , 50-57.	1.3	3
167	Understanding Intraspecific Trait Variability Using Digital Herbarium Specimen Images. Biodiversity Information Science and Standards, 0, 4, .	0.0	2
168	Root traits catching up. New Phytologist, 2022, 235, 821-823.	7.3	1
169	Reply to â€~No evidence for different metabolism in domestic mammals'. Nature Ecology and Evolution, 2019, 3, 323-323.	7.8	0
170	Operationalizing Plant Traits. Biodiversity Information Science and Standards, 0, 3, .	0.0	0