George F Wittenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/288481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <scp>ENIGMA</scp> Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke. Human Brain Mapping, 2022, 43, 129-148.	3.6	54
2	Normal aging affects unconstrained three-dimensional reaching against gravity with reduced vertical precision and increased co-contraction: a pilot study. Experimental Brain Research, 2022, 240, 1029.	1.5	2
3	Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis. Journal of the American Heart Association, 2022, 11, e025109.	3.7	8
4	A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. Scientific Data, 2022, 9, .	5.3	33
5	Detection of Stroke-Induced Visual Neglect and Target Response Prediction Using Augmented Reality and Electroencephalography. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1840-1850.	4.9	2
6	Neuromuscular Electrical Stimulation and High-Protein Supplementation After Subarachnoid Hemorrhage: A Single-Center Phase 2 Randomized Clinical Trial. Neurocritical Care, 2021, 35, 46-55.	2.4	11
7	Motor Recovery: How Rehabilitation Techniques and Technologies Can Enhance Recovery and Neuroplasticity. Seminars in Neurology, 2021, 41, 167-176.	1.4	7
8	Electrical stimulation of the external ear acutely activates noradrenergic mechanisms in humans. Brain Stimulation, 2021, 14, 990-1001.	1.6	23
9	Corticospinal recruitment of spinal motor neurons in human stroke survivors. Journal of Physiology, 2021, 599, 4357-4373.	2.9	7
10	Real-World Adherence to OnabotulinumtoxinA Treatment for Spasticity: Insights From the ASPIRE Study. Archives of Physical Medicine and Rehabilitation, 2021, 102, 2172-2184.e6.	0.9	1
11	Perturbation of cortical activity elicits regional and age-dependent effects on unconstrained reaching behavior: a pilot study. Experimental Brain Research, 2021, 239, 3585-3600.	1.5	2
12	Clinical Performance Measures for Stroke Rehabilitation: Performance Measures From the American Heart Association/American Stroke Association. Stroke, 2021, 52, e675-e700.	2.0	17
13	Examining the influence of mental stress on balance perturbation responses in older adults. Experimental Gerontology, 2021, 153, 111495.	2.8	1
14	Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide. Brain Communications, 2021, 3, fcab254.	3.3	7
15	Contraction Phase and Force Differentially Change Motor Evoked Potential Recruitment Slope and Interhemispheric Inhibition in Young Versus Old. Frontiers in Human Neuroscience, 2020, 14, 581008.	2.0	1
16	Adherence to OnabotulinumtoxinA Treatment in Post-Stroke and Multiple Sclerosis Patients with Spasticity from the ASPIRE Study. Archives of Physical Medicine and Rehabilitation, 2020, 101, e2.	0.9	0
17	Age-Related Differences in Arm and Trunk Responses to First and Repeated Exposure to Laterally Induced Imbalances. Brain Sciences, 2020, 10, 574.	2.3	5
18	The Motor Cortex Has Independent Representations for Ipsilateral and Contralateral Arm Movements But Correlated Representations for Grasping. Cerebral Cortex, 2020, 30, 5400-5409.	2.9	19

GEORGE F WITTENBERG

#	Article	IF	CITATIONS
19	Aberrant Middle Prefrontal-Motor Cortex Connectivity Mediates Motor Inhibitory Biomarker in Schizophrenia. Biological Psychiatry, 2019, 85, 49-59.	1.3	23
20	Robot-Assisted Arm Training in Chronic Stroke: Addition of Transition-to-Task Practice. Neurorehabilitation and Neural Repair, 2019, 33, 751-761.	2.9	33
21	Methods for an Investigation of Neurophysiological and Kinematic Predictors of Response to Upper Extremity Repetitive Task Practice in Chronic Stroke. Archives of Rehabilitation Research and Clinical Translation, 2019, 1, 100024.	0.9	5
22	Not all brain regions are created equal for improving bimanual coordination in individuals with chronic stroke. Clinical Neurophysiology, 2019, 130, 1218-1230.	1.5	9
23	Cerebellar-Stimulation Evoked Prefrontal Electrical Synchrony Is Modulated by GABA. Cerebellum, 2018, 17, 550-563.	2.5	25
24	Bimanual coordination: A missing piece of arm rehabilitation after stroke. Restorative Neurology and Neuroscience, 2017, 35, 347-364.	0.7	65
25	What's the perfect dose for practice to make perfect?. Annals of Neurology, 2016, 80, 339-341.	5.3	4
26	A Clinically Relevant Method of Analyzing Continuous Change in Robotic Upper Extremity Chronic Stroke Rehabilitation. Neurorehabilitation and Neural Repair, 2016, 30, 703-712.	2.9	10
27	Predictors and brain connectivity changes associated with arm motor function improvement from intensive practice in chronic stroke. F1000Research, 2016, 5, 2119.	1.6	9
28	Predictors and brain connectivity changes associated with arm motor function improvement from intensive robotic practice in chronic stroke. F1000Research, 2016, 5, 2119.	1.6	12
29	Reduced Neural Differentiation Between Feedback Conditions After Bimanual Coordination Training with and without Augmented Visual Feedback. Cerebral Cortex, 2015, 25, 1958-1969.	2.9	42
30	Timing of motor cortical stimulation during planar robotic training differentially impacts neuroplasticity in older adults. Clinical Neurophysiology, 2015, 126, 1024-1032.	1.5	16
31	Complexity of Central Processing in Simple and Choice Multilimb Reaction-Time Tasks. PLoS ONE, 2014, 9, e90457.	2.5	38
32	Differential patterns of cortical reorganization following constraint-induced movement therapy during early and late period after stroke: A preliminary study. NeuroRehabilitation, 2014, 35, 415-426.	1.3	41
33	Functional neuroimaging of dressing-related skills. Brain Imaging and Behavior, 2014, 8, 335-345.	2.1	9
34	Tetanus toxin reduces local and descending regulation of the H-reflex. Muscle and Nerve, 2014, 49, 495-501.	2.2	3
35	Psychophysiological support of increasing attentional reserve during the development of a motor skill. Biological Psychology, 2014, 103, 349-356.	2.2	26
36	How do the physiology and transcallosal effects of the unaffected hemisphere change during inpatient rehabilitation after stroke?. Clinical Neurophysiology, 2014, 125, 1932-1933.	1.5	1

GEORGE F WITTENBERG

#	Article	IF	CITATIONS
37	Rapid plasticity of motor corticospinal system with robotic reach training. Neuroscience, 2013, 247, 55-64.	2.3	15
38	Posture-related modulations in motor cortical excitability of the proximal and distal arm muscles. Neuroscience Letters, 2013, 533, 65-70.	2.1	20
39	Altered Taste and Stroke: A Case Report and Literature Review. Topics in Stroke Rehabilitation, 2013, 20, 78-86.	1.9	20
40	Opportunities in rehabilitation research. Journal of Rehabilitation Research and Development, 2013, 50, vii-xxxii.	1.6	7
41	Motor cortical functional geometry in cerebral palsy and its relationship to disability. Clinical Neurophysiology, 2012, 123, 1383-1390.	1.5	40
42	Poster 4 Posture-Related Modulation in Motor Cortical Excitability of Proximal and Distal Upper Extremity Muscles. Archives of Physical Medicine and Rehabilitation, 2012, 93, e15-e16.	0.9	0
43	Getting Neurorehabilitation Right. Neurorehabilitation and Neural Repair, 2012, 26, 923-931.	2.9	473
44	Effect of Gravity on Robot-Assisted Motor Training After Chronic Stroke: A Randomized Trial. Archives of Physical Medicine and Rehabilitation, 2011, 92, 1754-1761.	0.9	87
45	The contribution of the putamen to sensory aspects of pain: insights from structural connectivity and brain lesions. Brain, 2011, 134, 1987-2004.	7.6	119
46	Elastic properties and yield stress of fetal membranes. , 2011, 2011, 2123-6.		3
47	An Economic Analysis of Robot-Assisted Therapy for Long-Term Upper-Limb Impairment After Stroke. Stroke, 2011, 42, 2630-2632.	2.0	139
48	Experience, cortical remapping, and recovery in brain disease. Neurobiology of Disease, 2010, 37, 252-258.	4.4	49
49	Arm movement maps evoked by cortical magnetic stimulation in a robotic environment. Neuroscience, 2010, 165, 774-781.	2.3	13
50	Poster 140: Transcranial Magnetic Stimulation of Primary Motor Cortex: Effects on Robotic Reach Training. Archives of Physical Medicine and Rehabilitation, 2010, 91, e47-e48.	0.9	0
51	Robot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke. New England Journal of Medicine, 2010, 362, 1772-1783.	27.0	1,175
52	Multicenter Randomized Trial of Robot-Assisted Rehabilitation for Chronic Stroke: Methods and Entry Characteristics for VA ROBOTICS. Neurorehabilitation and Neural Repair, 2009, 23, 775-783.	2.9	75
53	Neural plasticity and treatment across the lifespan for motor deficits in cerebral palsy. Developmental Medicine and Child Neurology, 2009, 51, 130-133.	2.1	16
54	Motor mapping in cerebral palsy. Developmental Medicine and Child Neurology, 2009, 51, 134-139.	2.1	26

GEORGE F WITTENBERG

3

#	Article	IF	CITATIONS
55	Roles of the Insular Cortex in the Modulation of Pain: Insights from Brain Lesions. Journal of Neuroscience, 2009, 29, 2684-2694.	3.6	209
56	The relationship between visual orienting and interlimb synchrony in a patient with a superior parietal infarction: A case study. Neurocase, 2009, 15, 73-88.	0.6	3
57	The neural basis of constraint-induced movement therapy. Current Opinion in Neurology, 2009, 22, 582-588.	3.6	60
58	Fractal dimension assessment of brain white matter structural complexity post stroke in relation to upper-extremity motor function. Brain Research, 2008, 1228, 229-240.	2.2	43
59	Constraint-Induced Movement Therapy Results in Increased Motor Map Area in Subjects 3 to 9 Months After Stroke. Neurorehabilitation and Neural Repair, 2008, 22, 505-513.	2.9	190
60	Dynamic Course of Intracortical TMS Paired-Pulse Responses During Recovery of Motor Function After Stroke. Neurorehabilitation and Neural Repair, 2007, 21, 568-573.	2.9	47
61	Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain, 2006, 129, 791-808.	7.6	403
62	A Patient With Nasal Ulceration After Brain Surgery. Archives of Dermatology, 2005, 141, 796-8.	1.4	8
63	Functional connectivity between somatosensory and visual cortex in early blind humans. European Journal of Neuroscience, 2004, 20, 1923-1927.	2.6	135
64	Constraint-Induced Therapy in Stroke: Magnetic-Stimulation Motor Maps and Cerebral Activation. Neurorehabilitation and Neural Repair, 2003, 17, 48-57.	2.9	267
65	Improving Hand Function in Chronic Stroke. Archives of Neurology, 2002, 59, 1278.	4.5	226
66	Stimulation-Induced Within-Representation and Across-Representation Plasticity in Human Motor Cortex. Journal of Neuroscience, 2002, 22, 5563-5571.	3.6	47
67	Evolution of TMS motor maps during recovery after stroke. NeuroImage, 2001, 13, 1281.	4.2	5
68	Mirror Movements Complicate Interpretation of Cerebral Activation Changes during Recovery from Subcortical Infarction. Neurorehabilitation and Neural Repair, 2000, 14, 213-221.	2.9	33
69	213. Study of anatomical connectivity with TMS-PET in intact humans. Biological Psychiatry, 2000, 47, S65.	1.3	2
70	Neurosteroid regulation of inhibitory synaptic transmission in the rat hippocampus in vitro. Neuroscience, 1999, 90, 1177-1183.	2.3	36
71	Acute alcohol blocks neurosteroid modulation of synaptic transmission and long-term potentiation in the rat hippocampal slice. Brain Research, 1995, 701, 238-248.	2.2	32

Making behavioural choices with interneurones in a distributed system. , 1992, , 170-200.

#	Article	IF	CITATIONS
73	Segmental specialization of neuronal connectivity in the leech. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 167, 453-459.	1.6	25
74	Function of identified interneurons in the leech elucidated using neural networks trained by back-propagation. Nature, 1989, 340, 468-471.	27.8	54
75	Multifunctional interneurons in behavioral circuits of the medicinal leech. Experientia, 1988, 44, 383-389.	1.2	38
76	Suppression of immune response to Listeria monocytogenes: mechanism(s) of immune complex suppression. Infection and Immunity, 1985, 50, 343-353.	2.2	26
77	Anatomical and Physiological Predictors of Recovery. , 0, , .		Ο
78	Baseline Predictors of Response to Repetitive Task Practice in Chronic Stroke. Neurorehabilitation and Neural Repair, 0, , 154596832210951.	2.9	6