Moisés Selman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2884663/publications.pdf

Version: 2024-02-01

4117 7096 42,820 185 78 175 citations h-index g-index papers 192 192 192 22642 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 788-824.	5.6	6,033
2	Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 2014, 370, 2071-2082.	27.0	3,351
3	An Official American Thoracic Society/European Respiratory Society Statement: Update of the International Multidisciplinary Classification of the Idiopathic Interstitial Pneumonias. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 733-748.	5.6	3,134
4	Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 2018, 198, e44-e68.	5.6	2,678
5	Idiopathic pulmonary fibrosis. Lancet, The, 2011, 378, 1949-1961.	13.7	1,643
6	Idiopathic Pulmonary Fibrosis: Prevailing and Evolving Hypotheses about Its Pathogenesis and Implications for Therapy. Annals of Internal Medicine, 2001, 134, 136.	3.9	1,542
7	An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 2015, 192, e3-e19.	5.6	1,521
8	Acute Exacerbations of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 636-643.	5.6	996
9	Efficacy of a Tyrosine Kinase Inhibitor in Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 2011, 365, 1079-1087.	27.0	930
10	An Official American Thoracic Society Clinical Practice Guideline: The Clinical Utility of Bronchoalveolar Lavage Cellular Analysis in Interstitial Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 1004-1014.	5.6	832
11	Idiopathic pulmonary fibrosis. Nature Reviews Disease Primers, 2017, 3, 17074.	30.5	786
12	Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 2022, 205, e18-e47.	5.6	780
13	The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nature Medicine, 2008, 14, 45-54.	30.7	675
14	Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nature Genetics, 2013, 45, 613-620.	21.4	667
15	Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6292-6297.	7.1	576
16	Clinical Diagnosis of Hypersensitivity Pneumonitis. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 952-958.	5.6	569
17	Diagnosis of Hypersensitivity Pneumonitis in Adults: An Official ATS/JRS/ALAT Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 2020, 202, e36-e69.	5.6	508
18	MMP1 and MMP7 as Potential Peripheral Blood Biomarkers in Idiopathic Pulmonary Fibrosis. PLoS Medicine, 2008, 5, e93.	8.4	467

#	Article	IF	CITATIONS
19	Inhibition and Role of let-7d in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 220-229.	5.6	454
20	Upregulation of Gelatinases A and B, Collagenases 1 and 2, and Increased Parenchymal Cell Death in COPD. Chest, 2000, 117, 684-694.	0.8	451
21	Gene Expression Profiles Distinguish Idiopathic Pulmonary Fibrosis from Hypersensitivity Pneumonitis. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 188-198.	5.6	431
22	Role of Epithelial Cells in Idiopathic Pulmonary Fibrosis: From Innocent Targets to Serial Killers. Proceedings of the American Thoracic Society, 2006, 3, 364-372.	3.5	429
23	Up-Regulation and Profibrotic Role of Osteopontin in Human Idiopathic Pulmonary Fibrosis. PLoS Medicine, 2005, 2, e251.	8.4	420
24	Idiopathic Pulmonary Fibrosis and Emphysema. Chest, 2009, 136, 10-15.	0.8	416
25	Hypersensitivity Pneumonitis. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 314-324.	5.6	390
26	Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. Journal of Clinical Investigation, 2006, 116, 3183-3194.	8.2	388
27	Revealing the Pathogenic and Aging-related Mechanisms of the Enigmatic Idiopathic Pulmonary Fibrosis. An Integral Model. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1161-1172.	5.6	360
28	TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L562-L574.	2.9	358
29	Nintedanib in patients with idiopathic pulmonary fibrosis: Combined evidence from the TOMORROW and INPULSISA® trials. Respiratory Medicine, 2016, 113, 74-79.	2.9	335
30	Fibroblasts from Idiopathic Pulmonary Fibrosis and Normal Lungs Differ in Growth Rate, Apoptosis, and Tissue Inhibitor of Metalloproteinases Expression. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 591-598.	2.9	327
31	Idiopathic pulmonary fibrosis: an epithelial/fibroblastic cross-talk disorder. Respiratory Research, 2002, 3, 3.	3.6	321
32	Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. International Journal of Biochemistry and Cell Biology, 2008, 40, 2129-2140.	2.8	320
33	Idiopathic Pulmonary Fibrosis: Aberrant Recapitulation of Developmental Programs?. PLoS Medicine, 2008, 5, e62.	8.4	284
34	An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 667-679.	2.9	267
35	Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nature Reviews Drug Discovery, 2017, 16, 755-772.	46.4	251
36	Accelerated Variant of Idiopathic Pulmonary Fibrosis: Clinical Behavior and Gene Expression Pattern. PLoS ONE, 2007, 2, e482.	2.5	238

#	Article	IF	Citations
37	Matrix Metalloproteases in Aberrant Fibrotic Tissue Remodeling. Proceedings of the American Thoracic Society, 2006, 3, 383-388.	3.5	219
38	Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respiratory Research, 2016, 17, 23.	3.6	219
39	Thy-1 Promoter Hypermethylation. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 610-618.	2.9	217
40	Mortality in Mexican Patients with Chronic Pigeon Breeder's Lung Compared with Those with Usual Interstitial Pneumonia. The American Review of Respiratory Disease, 1993, 148, 49-53.	2.9	199
41	Idiopathic Pulmonary Fibrosis. Drugs, 2004, 64, 405-430.	10.9	199
42	Needs and Opportunities for Research in Hypersensitivity Pneumonitis. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 792-798.	5.6	185
43	Identification of Diagnostic Criteria for Chronic Hypersensitivity Pneumonitis. An International Modified Delphi Survey. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1036-1044.	5.6	174
44	Surfactant protein $\frac{1}{2}$ A and B genetic variants predispose to idiopathic pulmonary fibrosis. Human Genetics, 2003, 113, 542-550.	3.8	166
45	Classification of Hypersensitivity Pneumonitis. International Archives of Allergy and Immunology, 2009, 149, 161-166.	2.1	155
46	Functional Diversity of T-Cell Subpopulations in Subacute and Chronic Hypersensitivity Pneumonitis. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 44-55.	5.6	154
47	Blue Journal Conference. Aging and Susceptibility to Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 261-269.	5.6	149
48	Major Histocompatibility Complex and Tumor Necrosis Factor- α Polymorphisms in Pigeon Breeder's Disease. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 1528-1533.	5.6	146
49	Familial pulmonary fibrosis is the strongest risk factor for idiopathic pulmonary fibrosis. Respiratory Medicine, 2011, 105, 1902-1907.	2.9	141
50	<pre><scp>mTORC</scp> 1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in <scp>IPF</scp> fibroblasts. Aging Cell, 2016, 15, 1103-1112.</pre>	6.7	140
51	The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cellular Signalling, 2020, 66, 109482.	3.6	140
52	Time for a change: is idiopathic pulmonary fibrosis still idiopathic and only fibrotic?. Lancet Respiratory Medicine, the, 2018, 6, 154-160.	10.7	137
53	Role of Sonic Hedgehog in idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L978-L990.	2.9	131
54	Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis. Autophagy, 2015, 11, 670-684.	9.1	131

#	Article	IF	CITATIONS
55	Increase of Lung Neutrophils in Hypersensitivity Pneumonitis Is Associated with Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2000, 161, 1698-1704.	5.6	130
56	Utility of a Provocation Test for Diagnosis of Chronic Pigeon Breeder's Disease. American Journal of Respiratory and Critical Care Medicine, 1998, 158, 862-869.	5.6	124
57	Colchicine, D-Penicillamine, and Prednisone in the Treatment of Idiopathic Pulmonary Fibrosis. Chest, 1998, 114, 507-512.	0.8	124
58	Hypersensitivity pneumonitis: a multifaceted deceiving disorder. Clinics in Chest Medicine, 2004, 25, 531-547.	2.1	121
59	Airway-centered Interstitial Fibrosis. American Journal of Surgical Pathology, 2004, 28, 62-68.	3.7	120
60	FGF-1 reverts epithelial-mesenchymal transition induced by TGF- \hat{l}^2 1 through MAPK/ERK kinase pathway. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L222-L231.	2.9	116
61	Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data. Lancet Respiratory Medicine,the, 2015, 3, 473-482.	10.7	112
62	Overexpression of MMP9 in macrophages attenuates pulmonary fibrosis induced by bleomycinâ ⁻ †. International Journal of Biochemistry and Cell Biology, 2007, 39, 2324-2338.	2.8	104
63	Diagnosis and Evaluation of Hypersensitivity Pneumonitis. Chest, 2021, 160, e97-e156.	0.8	104
64	Expression of Matrix Metalloproteases by Fibrocytes. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1144-1152.	5.6	101
65	ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis. Nature Medicine, 2017, 23, 1405-1415.	30.7	99
66	Gelatinases A and B Are Up-Regulated in Rat Lungs by Subacute Hyperoxia. American Journal of Pathology, 1998, 153, 833-844.	3.8	98
67	Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. European Respiratory Journal, 2016, 48, 538-552.	6.7	96
68	SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis. FASEB Journal, 2017, 31, 2520-2532.	0.5	96
69	Matrix Metalloproteinase (MMP)-1 Induces Lung Alveolar Epithelial Cell Migration and Proliferation, Protects from Apoptosis, and Represses Mitochondrial Oxygen Consumption. Journal of Biological Chemistry, 2013, 288, 25964-25975.	3.4	94
70	Hypersensitivity Pneumonitis: Current Concepts of Pathogenesis and Potential Targets for Treatment. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 301-308.	5.6	94
71	Matrix Metalloproteinase-19 Is a Key Regulator of Lung Fibrosis in Mice and Humans. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 752-762.	5.6	92
72	Resequencing Study Confirms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 199-208.	5.6	90

#	Article	IF	CITATIONS
73	Hypermethylation-mediated silencing of p14 ^{ARF} in fibroblasts from idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L295-L303.	2.9	86
74	Approaching the degradome in idiopathic pulmonary fibrosis⯆. International Journal of Biochemistry and Cell Biology, 2008, 40, 1141-1155.	2.8	85
75	Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia. BMC Genetics, 2016, 17, 74.	2.7	84
76	Morphologic diversity of chronic pigeon breeder's disease: Clinical features and survival. Respiratory Medicine, 2011, 105, 608-614.	2.9	82
77	Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis. Journal of Pathology, 2016, 240, 197-210.	4.5	81
78	Hypersensitivity Pneumonitis Caused by Fungi. Proceedings of the American Thoracic Society, 2010, 7, 229-236.	3.5	80
79	Bronchiolitis in Chronic Pigeon Breeder's Disease. Chest, 1996, 110, 371-377.	0.8	78
80	Absence of Thy-1 results in TGF- \hat{l}^2 induced MMP-9 expression and confers a profibrotic phenotype to human lung fibroblasts. Laboratory Investigation, 2011, 91, 1206-1218.	3.7	77
81	Diagnostic accuracy of a clinical diagnosis of idiopathic pulmonary fibrosis: an international case–cohort study. European Respiratory Journal, 2017, 50, 1700936.	6.7	75
82	Hypersensitivity pneumonitis. Nature Reviews Disease Primers, 2020, 6, 65.	30.5	75
83	MMP-1 polymorphisms and the risk of idiopathic pulmonary fibrosis. Human Genetics, 2008, 124, 465-472.	3.8	72
84	Activated MCTC mast cells infiltrate diseased lung areas in cystic fibrosis and idiopathic pulmonary fibrosis. Respiratory Research, 2011, 12, 139.	3.6	72
85	Risk factors for idiopathic pulmonary fibrosis in a Mexican population. A case-control study. Respiratory Medicine, 2010, 104, 305-309.	2.9	70
86	Telomerase and Telomere Length in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 260-268.	2.9	69
87	Aging and Interstitial Lung Diseases: Unraveling an Old Forgotten Player in the Pathogenesis of Lung Fibrosis. Seminars in Respiratory and Critical Care Medicine, 2010, 31, 607-617.	2.1	68
88	Biomarkers of extracellular matrix turnover in patients with idiopathic pulmonary fibrosis given nintedanib (INMARK study): a randomised, placebo-controlled study. Lancet Respiratory Medicine, the, 2019, 7, 771-779.	10.7	65
89	PINK1 attenuates mtDNA release in alveolar epithelial cells and TLR9 mediated profibrotic responses. PLoS ONE, 2019, 14, e0218003.	2.5	65
90	Fibrocytes Contribute to Inflammation and Fibrosis in Chronic Hypersensitivity Pneumonitis through Paracrine Effects. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 427-436.	5.6	62

#	Article	IF	CITATIONS
91	Acute exacerbation of idiopathic pulmonary fibrosis: international survey and call for harmonisation. European Respiratory Journal, 2020, 55, 1901760.	6.7	61
92	Bleomycin-induced Pulmonary Fibrosis Is Attenuated in γ-Glutamyl Transpeptidase–Deficient Mice. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 925-932.	5 . 6	60
93	Diagnostic Likelihood Thresholds That Define a Working Diagnosis of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1146-1153.	5 . 6	60
94	Acidic fibroblast growth factor decreases α-smooth muscle actin expression and induces apoptosis in human normal lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L871-L879.	2.9	59
95	Long-term treatment of patients with idiopathic pulmonary fibrosis with nintedanib: results from the TOMORROW trial and its open-label extension. Thorax, 2018, 73, 581-583.	5 . 6	59
96	Role of matrix metaloproteases in idiopathic pulmonary fibrosis. Fibrogenesis and Tissue Repair, 2012, 5, S9.	3 . 4	58
97	The Interplay of the Genetic Architecture, Aging, and Environmental Factors in the Pathogenesis of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 163-172.	2.9	56
98	Transporter associated with antigen processing (TAP) 1 gene polymorphisms in patients with hypersensitivity pneumonitis. Experimental and Molecular Pathology, 2008, 84, 173-177.	2.1	55
99	The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1492-1500.	3.6	55
100	Immunopathology, Diagnosis, and Management of Hypersensitivity Pneumonitis. Seminars in Respiratory and Critical Care Medicine, 2012, 33, 543-554.	2.1	53
101	Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells. PLoS ONE, 2016, 11, e0150383.	2.5	52
102	Acidic Fibroblast Growth Factor Induces an Antifibrogenic Phenotype in Human Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 1020-1027.	2.9	49
103	Increased Surfactant Protein-A Levels in Patients With Newly Diagnosed Idiopathic Pulmonary Fibrosis. Chest, 2004, 125, 617-625.	0.8	49
104	PSMB8 (LMP7) but not PSMB9 (LMP2) gene polymorphisms are associated to pigeon breeder's hypersensitivity pneumonitis. Respiratory Medicine, 2010, 104, 889-894.	2.9	49
105	Cigarette smoke exposure potentiates bleomycin-induced lung fibrosis in guinea pigs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L949-L956.	2.9	45
106	Exposure Assessment Tools for Hypersensitivity Pneumonitis. An Official American Thoracic Society Workshop Report. Annals of the American Thoracic Society, 2020, 17, 1501-1509.	3.2	45
107	Gene expression profiles reveal molecular mechanisms involved in the progression and resolution of bleomycin-induced lung fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L593-L601.	2.9	44
108	Increase of HLA-DR7 in pigeon breeder's lung in a Mexican population. Clinical Immunology and Immunopathology, 1987, 44, 63-70.	2.0	43

#	Article	IF	Citations
109	Matrix metalloproteinase (MMP)-19-deficient fibroblasts display a profibrotic phenotype. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L511-L522.	2.9	43
110	Major histocompatibility complex and alveolar epithelial apoptosis in idiopathic pulmonary fibrosis. Human Genetics, 2005, 118, 235-244.	3.8	42
111	When things go wrong: exploring possible mechanisms driving the progressive fibrosis phenotype in interstitial lung diseases. European Respiratory Journal, 2021, 58, 2004507.	6.7	42
112	Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Research Reviews, 2021, 70, 101393.	10.9	42
113	Immunoglobulin Free Light Chains Are Increased in Hypersensitivity Pneumonitis and Idiopathic Pulmonary Fibrosis. PLoS ONE, 2011, 6, e25392.	2.5	41
114	Emerging insights into the role of matrix metalloproteases as therapeutic targets in fibrosis. Matrix Biology, 2018, 68-69, 167-179.	3.6	40
115	Idiopathic pulmonary fibrosis: Clinical behavior and aging associated comorbidities. Respiratory Medicine, 2017, 129, 46-52.	2.9	39
116	MICA polymorphisms and decreased expression of the MICA receptor NKG2D contribute to idiopathic pulmonary fibrosis susceptibility. Human Genetics, 2009, 125, 639-648.	3.8	37
117	Dehydroepiandrosterone has strong antifibrotic effects and is decreased in idiopathic pulmonary fibrosis. European Respiratory Journal, 2013, 42, 1309-1321.	6.7	37
118	Genetic susceptibility to multicase hypersensitivity pneumonitis is associated with the TNF-238 GG genotype of the promoter region and HLA-DRB1*04 bearing HLA haplotypes. Respiratory Medicine, 2014, 108, 211-217.	2.9	37
119	Increased Expression of CC16 in Patients with Idiopathic Pulmonary Fibrosis. PLoS ONE, 2016, 11, e0168552.	2.5	37
120	Predictive factors and prognostic effect of telomere shortening in pulmonary fibrosis. Respirology, 2019, 24, 146-153.	2.3	35
121	Membrane type-matrix metalloproteinases in idiopathic pulmonary fibrosis. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2006, 23, 13-21.	0.2	35
122	A Systematically Derived Exposure Assessment Instrument for Chronic Hypersensitivity Pneumonitis. Chest, 2020, 157, 1506-1512.	0.8	33
123	Airway involvement in hypersensitivity pneumonitis. Current Opinion in Pulmonary Medicine, 1998, 4, 9-15.	2.6	31
124	Alveolar Epithelial Cell Disintegrity and Subsequent Activation. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 119-121.	5.6	31
125	Aging and Pulmonary Fibrosis. Revista De Investigacion Clinica, 2016, 68, 75-83.	0.4	31
126	Fibrogenic Lung Injury Induces Non–Cell-Autonomous Fibroblast Invasion. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 831-842.	2.9	27

#	Article	IF	CITATIONS
127	Local and Circulating Microchimerism Is Associated with Hypersensitivity Pneumonitis. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 90-95.	5.6	26
128	Mitochondrial 8-oxoguanine DNA glycosylase mitigates alveolar epithelial cell PINK1 deficiency, mitochondrial DNA damage, apoptosis, and lung fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1084-L1096.	2.9	26
129	Delayed resolution of bleomycin-induced pulmonary fibrosis in absence of MMP13 (collagenase 3). American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L961-L976.	2.9	25
130	Why Does an Aging Smoker's Lung Develop Idiopathic Pulmonary Fibrosis and Not Chronic Obstructive Pulmonary Disease?. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 279-285.	5.6	23
131	Antacid Medication and Antireflux Surgery in Patients with Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Annals of the American Thoracic Society, 2022, 19, 833-844.	3.2	23
132	Outcomes following decline in forced vital capacity in patients with idiopathic pulmonary fibrosis: Results from the INPULSIS and INPULSIS-ON trials of nintedanib. Respiratory Medicine, 2019, 156, 20-25.	2.9	22
133	Emerging drugs for idiopathic pulmonary fibrosis. Expert Opinion on Emerging Drugs, 2011, 16, 341-362.	2.4	21
134	Analysis of heat shock protein 70 gene polymorphisms Mexican patients with idiopathic pulmonary fibrosis. BMC Pulmonary Medicine, 2015, 15, 129.	2.0	21
135	Upregulation and Nuclear Location of MMP28 in Alveolar Epithelium of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 77-86.	2.9	21
136	Lower levels of \hat{l} ±-Klotho in serum are associated with decreased lung function in individuals with interstitial lung abnormalities. Scientific Reports, 2019, 9, 10801.	3.3	20
137	An Open-label Study With Pirfenidone on Chronic Hypersensitivity Pneumonitis. Archivos De Bronconeumologia, 2020, 56, 163-169.	0.8	20
138	Risk factors associated with the development of interstitial lung abnormalities. European Respiratory Journal, 2021, 58, 2003005.	6.7	20
139	R-Spondin-2 Is Upregulated in Idiopathic Pulmonary Fibrosis and Affects Fibroblast Behavior. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 65-76.	2.9	19
140	Identification of MMP28 as a biomarker for the differential diagnosis of idiopathic pulmonary fibrosis. PLoS ONE, 2018, 13, e0203779.	2.5	19
141	Transforming growth factor beta 1 induces methylation changes in lung fibroblasts. PLoS ONE, 2019, 14, e0223512.	2.5	19
142	Mitochondrial Dysfunction and Alterations in Mitochondrial Permeability Transition Pore (mPTP) Contribute to Apoptosis Resistance in Idiopathic Pulmonary Fibrosis Fibroblasts. International Journal of Molecular Sciences, 2021, 22, 7870.	4.1	19
143	Circulating Levels of PD-L1, TIM-3 and MMP-7 Are Promising Biomarkers to Differentiate COVID-19 Patients That Require Invasive Mechanical Ventilation. Biomolecules, 2022, 12, 445.	4.0	18
144	Grainyhead-like 2 (GRHL2) distribution reveals novel pathophysiological differences between human idiopathic pulmonary fibrosis and mouse models of pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L405-L419.	2.9	17

#	Article	IF	CITATIONS
145	Update in Interstitial Lung Disease 2019. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 500-507.	5.6	17
146	Update in Diffuse Parenchymal Lung Disease 2009. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 883-888.	5.6	16
147	Stochastic Age-related Epigenetic Drift in the Pathogenesis of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1328-1330.	5.6	16
148	A major genetic determinant of autoimmune diseases is associated with the presence of autoantibodies in hypersensitivity pneumonitis. European Respiratory Journal, 2020, 56, 1901380.	6.7	16
149	Increased alveolar soluble annexin V promotes lung inflammation and fibrosis. European Respiratory Journal, 2015, 46, 1417-1429.	6.7	15
150	Small airway dysfunction in chronic hypersensitivity pneumonitis. Respirology, 2017, 22, 1637-1642.	2.3	15
151	Impaired autophagic activity and ATG4B deficiency are associated with increased endoplasmic reticulum stress-induced lung injury. Aging, 2018, 10, 2098-2112.	3.1	15
152	Loss of MT1-MMP in Alveolar Epithelial Cells Exacerbates Pulmonary Fibrosis. International Journal of Molecular Sciences, 2021, 22, 2923.	4.1	15
153	Circulating microRNA Signature Associated to Interstitial Lung Abnormalities in Respiratory Asymptomatic Subjects. Cells, 2020, 9, 1556.	4.1	14
154	SNP and Haplotype Interaction Models Reveal Association of Surfactant Protein Gene Polymorphisms With Hypersensitivity Pneumonitis of Mexican Population. Frontiers in Medicine, 2020, 7, 588404.	2.6	14
155	Inflammatory pathways are upregulated in the nasal epithelium in patients with idiopathic pulmonary fibrosis. Respiratory Research, 2018, 19, 233.	3.6	13
156	From pulmonary fibrosis to progressive pulmonary fibrosis: a lethal pathobiological jump. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L600-L607.	2.9	13
157	Hypersensitivity Pneumonitis: Diagnostic and Therapeutic Challenges. Frontiers in Medicine, 2021, 8, 718299.	2.6	11
158	Detection of salivary and seric IgG and IgA antipooled pigeon sera activities in patients with pigeon breeder's disease., 1996, 10, 149-154.		10
159	Transmembrane protease, serine 4 (TMPRSS4) is upregulated in IPF lungs and increases the fibrotic response in bleomycin-induced lung injury. PLoS ONE, 2018, 13, e0192963.	2.5	10
160	Mesenchymal–Epithelial Transition in Fibroblasts of Human Normal Lungs and Interstitial Lung Diseases. Biomolecules, 2021, 11, 378.	4.0	10
161	Comparing the Performance of Two Recommended Criteria for Establishing a Diagnosis for Hypersensitivity Pneumonitis. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 865-868.	5.6	9
162	Management of Acute Exacerbation of Idiopathic Pulmonary Fibrosis in Specialised and Non-specialised ILD Centres Around the World. Frontiers in Medicine, 2021, 8, 699644.	2.6	8

#	Article	IF	CITATIONS
163	An Open-label Study With Pirfenidone on Chronic Hypersensitivity Pneumonitis. Archivos De Bronconeumologia, 2020, 56, 163-169.	0.8	7
164	CD4+T cells in ageing-associated interstitial lung abnormalities show evidence of pro-inflammatory phenotypic and functional profile. Thorax, 2021, 76, 152-160.	5.6	7
165	Novedades diagn \tilde{A}^3 sticas y terap \tilde{A} ©uticas en fibrosis pulmonar progresiva. Archivos De Bronconeumologia, 2022, , .	0.8	7
166	Accelerated aging induced by deficiency of Zmpste24 protects old mice to develop bleomycin-induced pulmonary fibrosis. Aging, 2018, 10, 3881-3896.	3.1	6
167	Fibroblasts From Idiopathic Pulmonary Fibrosis Induce Apoptosis and Reduce the Migration Capacity of T Lymphocytes. Frontiers in Immunology, 2022, 13, 820347.	4.8	6
168	Fibroblast Senescence and Apoptosis. "One-Two Punch―to Slow Down Lung Fibrosis?. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 145-146.	2.9	6
169	Determination of the phenotypic age in residents of Mexico City: effect of accelerated ageing on lung function and structure. ERJ Open Research, 2020, 6, 00084-2020.	2.6	5
170	Risk factors associated with the detection of pulmonary emphysema in older asymptomatic respiratory subjects. BMC Pulmonary Medicine, 2020, 20, 164.	2.0	5
171	Role of matrix metalloproteases in pulmonary fibrosis. , 2008, , 39-55.		4
172	Decreased expression of transmembrane TNFR2 in lung leukocytes subpopulations of patients with non-fibrotic hypersensitivity pneumonitis compared with the fibrotic disease. Clinical Immunology, 2020, 215, 108424.	3.2	3
173	Idiopathic Interstitial Pneumonias. , 2010, , 1356-1397.		3
174	Update in Diffuse Parenchymal Lung Disease 2012. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 920-925.	5.6	2
175	Neumonitis por hipersensibilidad en la ciudad de México. Salud Publica De Mexico, 2000, 42, .	0.4	2
176	Single Nucleotide Polymorphisms (SNP) and SNP-SNP Interactions of the Surfactant Protein Genes Are Associated With Idiopathic Pulmonary Fibrosis in a Mexican Study Group; Comparison With Hypersensitivity Pneumonitis. Frontiers in Immunology, 0, 13, .	4.8	2
177	Idiopathic Interstitial Pneumonias., 2016,, 1118-1152.e19.		1
178	Identification of Autophagy-related Proteins in Lungs From Hypersensitivity Pneumonitis Patients. Journal of Histochemistry and Cytochemistry, 2020, 68, 365-376.	2.5	1
179	Development of a Diagnostic Biosensor Method of Hypersensitivity Pneumonitis towards a Point-of-Care Biosensor. Biosensors, 2021, 11, 196.	4.7	1
180	Aging and IPF: What Is the Link?., 2014,, 259-279.		1

#	Article	IF	CITATIONS
181	Revealing Real-Life Experiences With Antifibrotic Drugs in Idiopathic Pulmonary Fibrosis. Archivos De Bronconeumologia, 2019, 55, 73-74.	0.8	O
182	Revealing Real-Life Experiences With Antifibrotic Drugs in Idiopathic Pulmonary Fibrosis. Archivos De Bronconeumologia, 2019, 55, 73-74.	0.8	0
183	One Molecule, Two Opposite Biological Effects: The Many Faces of Matrix Metalloproteases in the Pathogenesis of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 406-408.	5.6	0
184	Hypersensitivity Pneumonitis: A Clinical Perspective. , 2012, , 239-251.		0
185	[Translated article] Diagnostic and Therapeutic Developments in Progressive Pulmonary Fibrosis. Archivos De Bronconeumologia, 2022, , .	0.8	0