Jay X Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2884645/publications.pdf

Version: 2024-02-01

82 papers	3,345 citations	28 h-index	149698 56 g-index
90	90	90	3875
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bacterial swarming dynamics in simulated physiological environments. Biophysical Journal, 2022, 121, 120a.	0.5	O
2	Enterobacter sp. Strain SM1_HS2B Manifests Transient Elongation and Swimming Motility in Liquid Medium. Microbiology Spectrum, 2022, 10 , .	3.0	1
3	An Inexpensive Imaging Platform to Record and Quantitate Bacterial Swarming. Bio-protocol, 2021, 11, e4162.	0.4	2
4	An expanding bacterial colony forms a depletion zone with growing droplets. Soft Matter, 2021, 17, 2315-2326.	2.7	5
5	Confinement discerns swarmers from planktonic bacteria. ELife, 2021, 10, .	6.0	10
6	Bacterial Swarmers Enriched During Intestinal Stress Ameliorate Damage. Gastroenterology, 2021, 161, 211-224.	1.3	13
7	Assessment of a Weak Mode of Bacterial Adhesion by Applying an Electric Field. Applied Microbiology, 2021, 1, 255-269.	1.6	0
8	Discovery of oscillations in rotational speed of body-tetheredCaulobacter crescentus. Physical Review E, 2020, 102, 062416.	2.1	1
9	Orbiting of Flagellated Bacteria within a Thin Fluid Film around Micrometer-Sized Particles. Biophysical Journal, 2019, 117, 346-354.	0.5	3
10	Molecular Crowding Modulates Actin Filament Mechanics and Structure. FASEB Journal, 2019, 33, 779.4.	0.5	0
11	Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores. Physical Review Letters, 2018, 120, 078101.	7.8	7
12	Capillary flow and mechanical buckling in a growing annular bacterial colony. Soft Matter, 2018, 14, 301-311.	2.7	3
13	Influence of Physical Effects on the Swarming Motility of Pseudomonas aeruginosa. Biophysical Journal, 2017, 112, 1462-1471.	0.5	66
14	Nanopore Measurements of Filamentous Viruses Reveal a Sub-nanometer-Scale Stagnant Fluid Layer. ACS Nano, 2017, 11, 11669-11677.	14.6	13
15	Measurements of fluid viscosity using a miniature ball drop device. Review of Scientific Instruments, 2016, 87, 054301.	1.3	19
16	The Aerotactic Response of Caulobacter crescentus. Biophysical Journal, 2016, 110, 2076-2084.	0.5	24
17	Physical biology of bacterial motility. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 178703.	0.5	0
18	Flagellar Motor Switching in Caulobacter Crescentus Obeys First Passage Time Statistics. Physical Review Letters, 2015, 115, 198103.	7.8	11

#	Article	IF	CITATIONS
19	Describing Directional Cell Migration with a Characteristic Directionality Time. PLoS ONE, 2015, 10, e0127425.	2.5	25
20	Altered motility of Caulobacter Crescentus in viscous and viscoelastic media. BMC Microbiology, 2014, 14, 322.	3.3	8
21	Technical Advance: Introducing a novel metric, directionality time, to quantify human neutrophil chemotaxis as a function of matrix composition and stiffness. Journal of Leukocyte Biology, 2014, 95, 993-1004.	3.3	14
22	Quantification of Directional Migration by a Characteristic Directionality Time. Biophysical Journal, 2014, 106, 573a.	0.5	0
23	Helical motion of the cell body enhances <i>Caulobacter crescentus</i> motility. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11252-11256.	7.1	75
24	Stiff filamentous virus translocations through solid-state nanopores. Nature Communications, 2014, 5, 4171.	12.8	103
25	Osmotic Pressure in a Bacterial Swarm. Biophysical Journal, 2014, 107, 871-878.	0.5	35
26	Holdfast spreading and thickening during Caulobacter crescentus attachment to surfaces. BMC Microbiology, 2013, 13, 139.	3.3	16
27	Molecular Adsorption Steers Bacterial Swimming at the Air/Water Interface. Biophysical Journal, 2013, 105, 21-28.	0.5	66
28	Microfluidic platform for isolating nucleic acid targets using sequence specific hybridization. Biomicrofluidics, 2013, 7, 44107.	2.4	20
29	Phosphoinositideâ€3â€kinase regulation of neutrophil mechanosensing is context dependent. FASEB Journal, 2013, 27, 650.1.	0.5	0
30	Solid-state nanopores for detection of rod-like viruses and trapping of single DNA molecules. , 2012, , .		2
31	Solid-state nanopores for detection of rod-like viruses and trapping of single DNA molecules. , 2012, , .		1
32	Stick-slip motion and elastic coupling in crawling cells. Physical Review E, 2012, 86, 031908.	2.1	17
33	Surface contact stimulates the justâ€inâ€time deployment of bacterial adhesins. Molecular Microbiology, 2012, 83, 41-51.	2.5	172
34	Tracking Bacterial Swimming Near a Solid or Air Surface. Biophysical Journal, 2011, 100, 599a.	0.5	0
35	Nitric oxide reduces sickle hemoglobin polymerization: Potential role of nitric oxide-induced charge alteration in depolymerization. Archives of Biochemistry and Biophysics, 2011, 510, 53-61.	3.0	15
36	Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks. Physical Review E, 2011, 83, 041902.	2.1	15

#	Article	IF	Citations
37	Accumulation of swimming bacteria near a solid surface. Physical Review E, 2011, 84, 041932.	2.1	103
38	Flagellin Redundancy in Caulobacter crescentus and Its Implications for Flagellar Filament Assembly. Journal of Bacteriology, 2011, 193, 2695-2707.	2.2	52
39	Substrate elasticity regulates neutrophil functions of host defense. Journal of the American College of Surgeons, 2010, 211, S41.	0.5	0
40	Observation and Kinematic Description of Long Actin Tracks Induced by Spherical Beads. Biophysical Journal, 2010, 99, 2793-2802.	0.5	8
41	Relative actin nucleation promotion efficiency by WASP and WAVE proteins in endothelial cells. Biochemical and Biophysical Research Communications, 2010, 400, 661-666.	2.1	13
42	Kinetic overshoot in actin network assembly induced jointly by branching and capping proteins. Physical Review E, 2009, 80, 041913.	2.1	2
43	Substrate stiffness influences neutrophil chemotaxis through a PI3K-dependent process. Journal of the American College of Surgeons, 2009, 209, S42-S43.	0.5	0
44	Accumulation of Microswimmers near a Surface Mediated by Collision and Rotational Brownian Motion. Physical Review Letters, 2009, 103, 078101.	7.8	251
45	Nonlinear Elasticity of Stiff Filament Networks: Strain Stiffening, Negative Normal Stress, and Filament Alignment in Fibrin Gels. Journal of Physical Chemistry B, 2009, 113, 3799-3805.	2.6	166
46	Does Substrate Stiffness Guide Neutrophils During An Inflammation Response?. Biophysical Journal, 2009, 96, 523a.	0.5	0
47	Measurement of Adhesion Force between a Human Neutrophil and a Candida albicans Hyphae Using a Micromanipulation Technique. Biophysical Journal, 2009, 96, 628a.	0.5	1
48	Neutrophil morphology and migration are affected by substrate elasticity. Blood, 2009, 114, 1387-1395.	1.4	169
49	NEUTROPHIL MIGRATION IS INFLUENCED BY SUBSTRATE STIFFNESS. FASEB Journal, 2009, 23, 929.6.	0.5	0
50	Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. Journal of Experimental Medicine, 2008, 205, 993-993.	8. 5	0
51	Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. Journal of Experimental Medicine, 2008, 205, 195-205.	8.5	133
52	Amplified effect of Brownian motion in bacterial near-surface swimming. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18355-18359.	7.1	182
53	Counterion-dependent microrheological properties ofF-actin solutions across the isotropic-nematic phase transition. Physical Review E, 2008, 78, 011908.	2.1	12
54	Effects of osmotic force and torque on microtubule bundling and pattern formation. Physical Review E, 2008, 78, 041910.	2.1	7

#	Article	IF	CITATIONS
55	Measuring the Strength of Bacterial Adhesion by Micromanipulation. ACS Symposium Series, 2008, , 231-241.	0.5	0
56	Nonmuscle myosin heavy chain IIA mediates integrin LFA-1 de-adhesion during T lymphocyte migration. Journal of Cell Biology, 2008, 180, i5-i5.	5.2	0
57	Polymerization Force Driven Buckling of Microtubule Bundles Determines the Wavelength of Patterns Formed in Tubulin Solutions. Physical Review Letters, 2007, 98, 198103.	7.8	17
58	Growth of tactoidal droplets during the first-order isotropic to nematic phase transition of F-actin. Physical Review E, 2007, 75, 061902.	2.1	65
59	Counterion-Induced Abnormal Slowdown of F-Actin Diffusion across the Isotropic-to-Nematic Phase Transition. Physical Review Letters, 2007, 99, 068103.	7.8	9
60	Switching Statistics of a Flagellar Motor: First-Passage Time and Dynamic Binding. Journal of Statistical Physics, 2007, 128, 257-267.	1.2	2
61	Orientational order parameter of the nematic liquid crystalline phase of F-actin. Physical Review E, 2006, 73, 061901.	2.1	19
62	Low Flagellar Motor Torque and High Swimming Efficiency of Caulobacter crescentus Swarmer Cells. Biophysical Journal, 2006, 91, 2726-2734.	0.5	71
63	Microtubule bundling and nested buckling drive stripe formation in polymerizing tubulin solutions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10654-10659.	7.1	40
64	Isotropic to Nematic Liquid Crystalline Phase Transition of F-Actin Varies from Continuous to First Order. Physical Review Letters, 2006, 97, 118103.	7.8	47
65	Adhesion of single bacterial cells in the micronewton range. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5764-5768.	7.1	204
66	Anionic poly(amino acid)s dissolve F-actin and DNA bundles, enhance DNase activity, and reduce the viscosity of cystic fibrosis sputum. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L599-L605.	2.9	45
67	Hydrodynamic stability of helical growth at low Reynolds number. Physical Review E, 2005, 71, 051912.	2.1	2
68	Single filament electrophoresis of F-actin and filamentous virus fd. Journal of Chemical Physics, 2005, 122, 104708.	3.0	13
69	The Elastic Properties of the Caulobacter crescentus Adhesive Holdfast Are Dependent on Oligomers of N -Acetylglucosamine. Journal of Bacteriology, 2005, 187, 257-265.	2.2	66
70	Intriguing Self-Assembly of Large Granules of F-Actin Facilitated by Gelsolin and \hat{l}_{\pm} -Actinin. Langmuir, 2005, 21, 2789-2795.	3.5	8
71	Diffusion of actin filaments within a thin layer between two walls. Physical Review E, 2004, 69, 061921.	2.1	58
72	Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry. Physical Review E, 2004, 70, 021503.	2.1	79

#	Article	IF	CITATIONS
73	Continuous isotropic-nematic liquid crystalline transition ofF-actin solutions. Physical Review E, 2003, 67, 040701.	2.1	33
74	Metal Ion-Induced Lateral Aggregation of Filamentous Viruses fd and M13. Biophysical Journal, 2002, 83, 566-581.	0.5	68
75	The Polyelectrolyte Nature and Large Scale Self-assembly of the Protein Filaments F-actin. , 2002, , .		O
76	Nematic liquid crystalline formation of F-actin displays features of a continuous transition. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0
77	Counterion-induced actin ring formation. European Biophysics Journal, 2001, 30, 477-484.	2.2	56
78	Viscoelastic properties of semiflexible filamentous bacteriophage fd. Physical Review E, 2000, 62, 5509-5517.	2.1	42
79	Thiol Oxidation of Actin Produces Dimers That Enhance the Elasticity of the F-Actin Network. Biophysical Journal, 1999, 76, 2208-2215.	0.5	59
80	Opposite Effects of Electrostatics and Steric Exclusion on Bundle Formation by F-Actin and Other Filamentous Polyelectrolytesâ€. Biochemistry, 1997, 36, 12600-12607.	2.5	105
81	The Polyelectrolyte Nature of F-actin and the Mechanism of Actin Bundle Formation. Journal of Biological Chemistry, 1996, 271, 8556-8563.	3.4	371
82	Bacterial Swarmers Exhibit a Protective Response to Intestinal Stress. SSRN Electronic Journal, 0, , .	0.4	1