
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2884376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical properties of morphologically complex black carbon aerosols: Effects of coatings. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 281, 108080.	1.1	8
2	Optical Characterization of Fresh and Photochemically Aged Aerosols Emitted from Laboratory Siberian Peat Burning. Atmosphere, 2022, 13, 386.	1.0	3
3	Albedo reduction for snow surfaces contaminated with soot aerosols: Comparison of experimental results and models. Aerosol Science and Technology, 2022, 56, 847-858.	1.5	6
4	Black metal nanoparticles from abrasion processes in everyday life: Bicycle drivetrains and rock-climbing ropes. Optics Communications, 2021, 479, 126413.	1.0	0
5	Comparison of equations used to estimate soot agglomerate absorption efficiency with the Rayleigh-Debye-Gans approximation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 262, 107522.	1.1	3
6	Effect of Biomass-Burning Emissions on Soil Water Repellency: A Pilot Laboratory Study. Fire, 2021, 4, 24.	1.2	7
7	Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42
8	Laboratory and field evaluation of real-time and near real-time PM _{2.5} smoke monitors. Journal of the Air and Waste Management Association, 2020, 70, 158-179.	0.9	38
9	Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor. Atmospheric Chemistry and Physics, 2020, 20, 8227-8250.	1.9	19
10	Snow Surface Albedo Sensitivity to Black Carbon: Radiative Transfer Modelling. Atmosphere, 2020, 11, 1077.	1.0	11
11	Emissions from the Open Laboratory Combustion of Cheatgrass (Bromus Tectorum). Atmosphere, 2020, 11, 406.	1.0	3
12	Evaluation of gas and particle sensors for detecting spacecraft-relevant fire emissions. Fire Safety Journal, 2020, 113, 102977.	1.4	14
13	Deposition of brown carbon onto snow: changes in snow optical and radiative properties. Atmospheric Chemistry and Physics, 2020, 20, 6095-6114.	1.9	25
14	Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research. Atmosphere, 2020, 11, 640.	1.0	7
15	Measurement of Light Absorbing Aerosols with Folded-Jamin Photothermal Interferometry. Sensors, 2020, 20, 2615.	2.1	6
16	Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations. Scientific Reports, 2019, 9, 11824.	1.6	47
17	Optical determination of black carbon mass concentrations in snow samples: A new analytical method. Science of the Total Environment, 2019, 697, 133934.	3.9	14
18	Spherical particle absorption over a broad range of imaginary refractive index. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 226, 81-86.	1.1	22

#	Article	IF	CITATIONS
19	Characterization of smoke for spacecraft fire safety. Journal of Aerosol Science, 2019, 136, 36-47.	1.8	14
20	A Multipollutant Smoke Emissions Sensing and Sampling Instrument Package for Unmanned Aircraft Systems: Development and Testing. Fire, 2019, 2, 32.	1.2	13
21	Small and large particle limits of single scattering albedo for homogeneous, spherical particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 204, 250-255.	1.1	51
22	Reduction of snow albedo from vehicle emissions at Portillo, Chile. Cold Regions Science and Technology, 2018, 146, 43-52.	1.6	21
23	Optical losses of photovoltaic modules due to mineral dust deposition: Experimental measurements and theoretical modeling. Solar Energy, 2018, 164, 160-173.	2.9	33
24	Apparatus for dry deposition of aerosols on snow. Atmospheric Measurement Techniques, 2018, 11, 6803-6813.	1.2	7
25	Single scattering albedo of homogeneous, spherical particles in the transition regime. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 219, 333-338.	1.1	27
26	Light absorption by polar and non-polar aerosol compounds from laboratory biomass combustion. Atmospheric Chemistry and Physics, 2018, 18, 10849-10867.	1.9	60
27	Physical and chemical characterization of aerosol in fresh and aged emissions from open combustion of biomass fuels. Aerosol Science and Technology, 2018, 52, 1266-1282.	1.5	32
28	Optical losses of photovoltaic cells due to aerosol deposition: Role of particle refractive index and size. Solar Energy, 2017, 155, 637-646.	2.9	24
29	Emissions and Partitioning of Intermediate-Volatility and Semi-Volatile Polar Organic Compounds (I/SV-POCs) During Laboratory Combustion of Boreal and Sub-Tropical Peat. Aerosol Science and Engineering, 2017, 1, 25-32.	1.1	10
30	Evolution of Multispectral Aerosol Absorption Properties in a Biogenically-Influenced Urban Environment during the CARES Campaign. Atmosphere, 2017, 8, 217.	1.0	8
31	Parameterization of the Aerosol Upscatter Fraction as Function of the Backscatter Fraction and Their Relationships to the Asymmetry Parameter for Radiative Transfer Calculations. Atmosphere, 2017, 8, 133.	1.0	25
32	The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles. Atmospheric Measurement Techniques, 2017, 10, 1043-1059.	1.2	60
33	Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012. Atmospheric Environment, 2016, 144, 345-360.	1.9	27
34	Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing. Atmospheric Chemistry and Physics, 2016, 16, 3033-3040.	1.9	119
35	Technical note: Mineralogical, chemical, morphological, and optical interrelationships of mineral dust re-suspensions. Atmospheric Chemistry and Physics, 2016, 16, 10809-10830.	1.9	89
36	Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Science of the Total Environment, 2016, 568, 391-401.	3.9	145

#	Article	IF	CITATIONS
37	Light absorption by biomass burning source emissions. Atmospheric Environment, 2016, 127, 347-354.	1.9	34
38	Coefficients of an analytical aerosol forcing equation determined with a Monte-Carlo radiation model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 164, 129-136.	1.1	21
39	A Biomass Combustion Chamber: Design, Evaluation, and a Case Study of Wheat Straw Combustion Emission Tests. Aerosol and Air Quality Research, 2015, 15, 2104-2114.	0.9	68
40	Blue moons and Martian sunsets. Applied Optics, 2014, 53, 1808.	0.9	7
41	Beam characteristics of fiber-based supercontinuum light sources with mirror- and lens-based beam collimators. Optics Express, 2014, 22, 13860.	1.7	5
42	Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames. Applied Physics Letters, 2014, 104, 243103.	1.5	17
43	Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: a review of techniques, their limitations and uncertainties. Analytical and Bioanalytical Chemistry, 2014, 406, 99-122.	1.9	186
44	Soot superaggregates from flaming wildfires and their direct radiative forcing. Scientific Reports, 2014, 4, 5508.	1.6	90
45	Accuracy of nearâ€surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,355.	1.2	7
46	Influence of photolysis on multispectral photoacoustic measurement of nitrogen dioxide concentration. Journal of the Air and Waste Management Association, 2013, 63, 1091-1097.	0.9	8
47	Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source. Atmospheric Measurement Techniques, 2013, 6, 3501-3513.	1.2	55
48	Observation of Superaggregates from a Reversed Gravity Low-Sooting Flame. Aerosol Science and Technology, 2012, 46, i-iii.	1.5	37
49	Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols. Atmospheric Chemistry and Physics, 2012, 12, 2587-2601.	1.9	74
50	Single scattering albedo of fine mineral dust aerosols controlled by iron concentration. Journal of Geophysical Research, 2012, 117, .	3.3	93
51	Strong radiative heating due to wintertime black carbon aerosols in the Brahmaputra River Valley. Geophysical Research Letters, 2012, 39, .	1.5	39
52	Technical Note: Simple analytical relationships between Ãngström coefficients of aerosol extinction, scattering, absorption, and single scattering albedo. Atmospheric Chemistry and Physics, 2011, 11, 10677-10680.	1.9	50
53	Absorption Ãngström coefficient, brown carbon, and aerosols: basic concepts, bulk matter, and spherical particles. Atmospheric Chemistry and Physics, 2011, 11, 1217-1225.	1.9	270
54	Particulate emission factors for mobile fossil fuel and biomass combustion sources. Science of the Total Environment, 2011, 409, 2384-2396.	3.9	32

#	Article	IF	CITATIONS
55	Real-world PM, NOx, CO, and ultrafine particle emission factors for military non-road heavy duty diesel vehicles. Atmospheric Environment, 2011, 45, 2603-2609.	1.9	20
56	Simulation of Aggregates with Point-Contacting Monomers in the Cluster–Dilute Regime. Part 1: Determining the Most Reliable Technique for Obtaining Three-Dimensional Fractal Dimension from Two-Dimensional Images. Aerosol Science and Technology, 2011, 45, 75-80.	1.5	27
57	Simulation of Aggregates with Point-Contacting Monomers in the Cluster–Dilute Regime. Part 2: Comparison of Two- and Three-Dimensional Structural Properties as a Function of Fractal Dimension. Aerosol Science and Technology, 2011, 45, 903-908.	1.5	17
58	Optical closure experiments for biomass smoke aerosols. Atmospheric Chemistry and Physics, 2010, 10, 9017-9026.	1.9	45
59	Monitoring Automotive Particulate Matter Emissions with LiDAR: A Review. Remote Sensing, 2010, 2, 1077-1119.	1.8	13
60	Brown carbon in tar balls from smoldering biomass combustion. Atmospheric Chemistry and Physics, 2010, 10, 6363-6370.	1.9	427
61	Chakrabarty <i>etÂal.</i> Reply:. Physical Review Letters, 2010, 104, .	2.9	4
62	Suomi. Bulletin of the American Meteorological Society, 2010, 91, 559-578.	1.7	13
63	Low Fractal Dimension Cluster-Dilute Soot Aggregates from a Premixed Flame. Physical Review Letters, 2009, 102, 235504.	2.9	51
64	Simultaneous Photoacoustic Spectroscopy of Aerosol and Oxygen A-Band Absorption for the Calibration of Aerosol Light Absorption Measurements. Aerosol Science and Technology, 2009, 43, 1084-1090.	1.5	16
65	Particle Optics in the Rayleigh Regime. Journal of the Air and Waste Management Association, 2009, 59, 1028-1031.	0.9	73
66	In-Plume Emission Test Stand 2: Emission Factors for 10- to 100-kW U.S. Military Generators. Journal of the Air and Waste Management Association, 2009, 59, 1446-1457.	0.9	17
67	The In-Plume Emission Test Stand: An Instrument Platform for the Real-Time Characterization of Fuel-Based Combustion Emissions. Journal of the Air and Waste Management Association, 2009, 59, 1437-1445.	0.9	13
68	Aerosol light absorption and its measurement: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 844-878.	1.1	675
69	FracMAP: A user-interactive package for performing simulation and orientation-specific morphology analysis of fractal-like solid nano-agglomerates. Computer Physics Communications, 2009, 180, 1376-1381.	3.0	11
70	Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. Journal of Geophysical Research, 2009, 114, .	3.3	336
71	Ice nucleation behavior of biomass combustion particles at cirrus temperatures. Journal of Geophysical Research, 2009, 114, .	3.3	68
72	Cloud condensation nucleation activity of biomass burning aerosol. Journal of Geophysical Research, 2009, 114, .	3.3	213

#	Article	IF	CITATIONS
73	Ice nuclei emissions from biomass burning. Journal of Geophysical Research, 2009, 114, .	3.3	125
74	Particulate-Phase and Gaseous Elemental Mercury Emissions During Biomass Combustion: Controlling Factors and Correlation with Particulate Matter Emissions. Environmental Science & Technology, 2008, 42, 721-727.	4.6	78
75	Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dualâ€wavelength photoacoustic instrument. Journal of Geophysical Research, 2008, 113, .	3.3	267
76	Morphology based particle segregation by electrostatic charge. Journal of Aerosol Science, 2008, 39, 785-792.	1.8	19
77	An Inter-Comparison of Instruments Measuring Black Carbon Content of Soot Particles. Aerosol Science and Technology, 2007, 41, 295-314.	1.5	276
78	Light scattering and absorption by fractal-like carbonaceous chain aggregates: comparison of theories and experiment. Applied Optics, 2007, 46, 6990.	2.1	93
79	Emissions from Laboratory Combustion of Wildland Fuels:Â Emission Factors and Source Profiles. Environmental Science & Technology, 2007, 41, 4317-4325.	4.6	192
80	Emissions of Levoglucosan, Methoxy Phenols, and Organic Acids from Prescribed Burns, Laboratory Combustion of Wildland Fuels, and Residential Wood Combustion. Environmental Science & Technology, 2007, 41, 2115-2122.	4.6	163
81	A case study of real-world tailpipe emissions for school buses using a 20% biodiesel blend. Science of the Total Environment, 2007, 385, 146-159.	3.9	36
82	Structural and Fractal Properties of Particles Emitted from Spark Ignition Engines. Environmental Science & Technology, 2006, 40, 6647-6654.	4.6	45
83	Photoacoustic insight for aerosol light absorption aloft from meteorological aircraft and comparison with particle soot absorption photometer measurements: DOE Southern Great Plains climate research facility and the coastal stratocumulus imposed perturbation experiments. Journal of Geophysical Research, 2006, 111, .	3.3	50
84	Particle emissions from laboratory combustion of wildland fuels: In situ optical and mass measurements. Geophysical Research Letters, 2006, 33, .	1.5	48
85	Emissions from the laboratory combustion of wildland fuels: Particle morphology and size. Journal of Geophysical Research, 2006, 111, .	3.3	159
86	Integrating nephelometer with a low truncation angle and an extended calibration scheme. Measurement Science and Technology, 2006, 17, 1723-1732.	1.4	55
87	Cavity Ring-Down and Cavity-Enhanced Detection Techniques for the Measurement of Aerosol Extinction. Aerosol Science and Technology, 2005, 39, 30-39.	1.5	93
88	Towards Aerosol Light-Absorption Measurements with a 7-Wavelength Aethalometer: Evaluation with a Photoacoustic Instrument and 3-Wavelength Nephelometer. Aerosol Science and Technology, 2005, 39, 17-29.	1.5	518
89	Scattering Cross-Section Emission Factors for Visibility and Radiative Transfer Applications: Military Vehicles Traveling on Unpaved Roads. Journal of the Air and Waste Management Association, 2005, 55, 1743-1750.	0.9	15
90	Evaluation of 1047-nm Photoacoustic Instruments and Photoelectric Aerosol Sensors in Source-Sampling of Black Carbon Aerosol and Particle-Bound PAHs from Gasoline and Diesel Powered Vehicles. Environmental Science & Technology, 2005, 39, 5398-5406.	4.6	53

#	Article	IF	CITATIONS
91	The Reno Aerosol Optics Study: An Evaluation of Aerosol Absorption Measurement Methods. Aerosol Science and Technology, 2005, 39, 1-16.	1.5	215
92	On-road measurement of automotive particle emissions by ultraviolet Lidar and transmissometer: theory. Measurement Science and Technology, 2004, 15, 2295-2302.	1.4	9
93	Correlation between automotive CO, HC, NO, and PM emission factors from on-road remote sensing: implications for inspection and maintenance programs. Transportation Research, Part D: Transport and Environment, 2004, 9, 477-496.	3.2	40
94	Remote sensing of PM, NO, CO and HC emission factors for on-road gasoline and diesel engine vehicles in Las Vegas, NV. Science of the Total Environment, 2004, 322, 123-137.	3.9	93
95	Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols. Environmental Science & Technology, 2004, 38, 4414-4422.	4.6	604
96	On-Road Vehicle Particulate Matter and Gaseous Emission Distributions in Las Vegas, Nevada, Compared with Other Areas. Journal of the Air and Waste Management Association, 2004, 54, 711-726.	0.9	22
97	Modeling reflectance and transmittance of quartz-fiber filter samples containing elemental carbon particles: Implications for thermal/optical analysis. Journal of Aerosol Science, 2004, 35, 765-780.	1.8	70
98	On-Road Measurement of Automotive Particle Emissions by Ultraviolet Lidar and Transmissometer:Â Instrument. Environmental Science & Technology, 2003, 37, 4971-4978.	4.6	39
99	Toward an ideal integrating nephelometer. Optics Letters, 2003, 28, 1007.	1.7	40
100	Evaporation–Condensation Effects on Resonant Photoacoustics of Volatile Aerosols. Journal of Atmospheric and Oceanic Technology, 2003, 20, 685-695.	0.5	45
101	Angular truncation errors in integrating nephelometry. Review of Scientific Instruments, 2003, 74, 3492-3501.	0.6	52
102	Time-Resolved Characterization of Diesel Particulate Emissions. 2. Instruments for Elemental and Organic Carbon Measurements. Environmental Science & Technology, 2001, 35, 1935-1942.	4.6	54
103	Time Resolved Characterization of Diesel Particulate Emissions. 1. Instruments for Particle Mass Measurements. Environmental Science & amp; Technology, 2001, 35, 781-787.	4.6	99
104	Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols. Review of Scientific Instruments, 2000, 71, 4545.	0.6	139
105	Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmospheric Environment, 1999, 33, 2845-2852.	1.9	368
106	Combined Raman–elastic backscatter lidar method for the measurement of backscatter ratios. Applied Optics, 1997, 36, 5144.	2.1	3
107	Radial wave thermoacoustic engines: Theory and examples for refrigerators and highâ€gain narrowâ€bandwidth photoacoustic spectrometers. Journal of the Acoustical Society of America, 1996, 99, 734-745.	0.5	12
108	Thermoacoustic enhancement of photoacoustic spectroscopy: Theory and measurements of the signal	0.6	16

#	Article	IF	CITATIONS
109	Optical Stark effect in the four-wave mixing and stimulated Raman spectra ofN2. Physical Review A, 1989, 40, 6983-6998.	1.0	22
110	Stimulated Rayleigh-Brillouin gain spectroscopy. Physical Review A, 1985, 31, 3733-3740.	1.0	19
111	Two-component velocity measurements in a supersonic nitrogen jet with spatially resolved inverse Raman spectroscopy. Optics Letters, 1984, 9, 536.	1.7	23
112	Stimulated Rayleigh-Brillouin Gain Spectroscopy in Pure Gases. Physical Review Letters, 1983, 51, 1648-1651.	2.9	32
113	Detection of Gasoline Vehicles with Gross PM Emissions. , 0, , .		10