List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2884000/publications.pdf

Version: 2024-02-01

		41627	66518
219	9,391	51	82
papers	citations	h-index	g-index
221	221	221	12974
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 451-466.	5.7	66
2	Acidic TMEâ€Responsive Nanoâ€Bi ₂ Se ₃ @MnCaP as a NIRâ€Iâ€Triggered Free Radical Generator for Hypoxiaâ€Irrelevant Phototherapy with High Specificity and Immunogenicity. Small, 2022, 18, e2104302.	5.2	19
3	Silk fibroin-capped metal-organic framework for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy. Acta Biomaterialia, 2022, 138, 545-560.	4.1	18
4	Microenvironment-responsive chemotherapeutic nanogels for enhancing tumor therapy via DNA damage and glutathione consumption. Chinese Chemical Letters, 2022, 33, 4197-4202.	4.8	20
5	The Systematic Evaluation of Physicochemical and Biological Properties In Vitro and In Vivo for Natural Silk Fibroin Nanoparticles. Advanced Fiber Materials, 2022, 4, 1141-1152.	7.9	9
6	A platinum nanourchin-based multi-enzymatic platform to disrupt mitochondrial function assisted by modulating the intracellular H2O2 homeostasis. Biomaterials, 2022, 286, 121572.	5.7	15
7	Active targeting redox-responsive mannosylated prodrug nanocolloids promote tumor recognition and cell internalization for enhanced colon cancer chemotherapy. Acta Biomaterialia, 2022, 147, 299-313.	4.1	20
8	Bioengineered nanogels for cancer immunotherapy. Chemical Society Reviews, 2022, 51, 5136-5174.	18.7	81
9	The co-influence of hyaluronic acid and collagen on the development of an engineered annulus tissue model with bone marrow stromal cells. Biomedical Materials (Bristol), 2022, 17, 054101.	1.7	2
10	Development of annulus fibrosus tissue construct with hydrogel coils containing pre-conditioned mesenchymal stem cell. Journal of Materials Science and Technology, 2021, 63, 27-34.	5.6	6
11	Facile engineering of silk fibroin capped AuPt bimetallic nanozyme responsive to tumor microenvironmental factors for enhanced nanocatalytic therapy. Theranostics, 2021, 11, 107-116.	4.6	25
12	Polydopamine (PDA)-activated cobalt sulfide nanospheres responsive to tumor microenvironment (TME) for chemotherapeutic-enhanced photothermal therapy. Chinese Chemical Letters, 2021, 32, 1055-1060.	4.8	34
13	Quantitative detection of morphine based on an up-conversion luminescent system. Analyst, The, 2021, 146, 989-996.	1.7	4
14	ROS-responsive cyclodextrin nanoplatform for combined photodynamic therapy and chemotherapy of cancer. Chinese Chemical Letters, 2021, 32, 162-167.	4.8	98
15	Intradermal administration of green synthesized nanosilver (NS) through film-coated PEGDA microneedles for potential antibacterial applications. Biomaterials Science, 2021, 9, 2244-2254.	2.6	21
16	Reduction-Responsive Chemo-Capsule-Based Prodrug Nanogel for Synergistic Treatment of Tumor Chemotherapy. ACS Applied Materials & Interfaces, 2021, 13, 8940-8951.	4.0	35
17	Silk Sericin-Based Nanoparticle as the Photosensitizer Chlorin e6 Carrier for Enhanced Cancer Photodynamic Therapy. ACS Sustainable Chemistry and Engineering, 2021, 9, 3213-3222.	3.2	7
18	Engineering silk sericin decorated zeolitic imidazolate framework-8 nanoplatform to enhance chemotherapy. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111594.	2.5	16

#	Article	IF	CITATIONS
19	Supramolecular Tadalafil Nanovaccine for Cancer Immunotherapy by Alleviating Myeloidâ€Derived Suppressor Cells and Heightening Immunogenicity. Small Methods, 2021, 5, e2100115.	4.6	44
20	Engineering oxygen-deficient ZrO2-x nanoplatform as therapy-activated "immunogenic cell death (ICD)―inducer to synergize photothermal-augmented sonodynamic tumor elimination in NIR-II biological window. Biomaterials, 2021, 272, 120787.	5.7	77
21	Catalytically Active CoFe ₂ O ₄ Nanoflowers for Augmented Sonodynamic and Chemodynamic Combination Therapy with Elicitation of Robust Immune Response. ACS Nano, 2021, 15, 11953-11969.	7.3	114
22	5G-enabled ultra-sensitive fluorescence sensor for proactive prognosis of COVID-19. Biosensors and Bioelectronics, 2021, 181, 113160.	5.3	96
23	Acid-Sensitive Supramolecular Nanoassemblies with Multivalent Interaction: Effective Tumor Retention and Deep Intratumor Infiltration. ACS Applied Materials & Interfaces, 2021, 13, 37680-37692.	4.0	18
24	Tumor microenvironment responsive biomimetic copper peroxide nanoreactors for drug delivery and enhanced chemodynamic therapy. Chemical Engineering Journal, 2021, 416, 129037.	6.6	53
25	Cylindrical polymer brushes-anisotropic unimolecular micelle drug delivery system for enhancing the effectiveness of chemotherapy. Bioactive Materials, 2021, 6, 2894-2904.	8.6	48
26	Multifunctional SGQDs-CORM@HA nanosheets for bacterial eradication through cascade-activated "nanoknife―effect and photodynamic/CO gas therapy. Biomaterials, 2021, 277, 121084.	5.7	30
27	MnO ₂ -capped silk fibroin (SF) nanoparticles with chlorin e6 (Ce6) encapsulation for augmented photo-driven therapy by modulating the tumor microenvironment. Journal of Materials Chemistry B, 2021, 9, 3677-3688.	2.9	10
28	Polyamino acid calcified nanohybrids induce immunogenic cell death for augmented chemotherapy and chemo-photodynamic synergistic therapy. Theranostics, 2021, 11, 9652-9666.	4.6	15
29	Ultrasound (US)-activated redox dyshomeostasis therapy reinforced by immunogenic cell death (ICD) through a mitochondrial targeting liposomal nanosystem. Theranostics, 2021, 11, 9470-9491.	4.6	29
30	Responsive agarose hydrogel incorporated with natural humic acid and MnO ₂ nanoparticles for effective relief of tumor hypoxia and enhanced photo-induced tumor therapy. Biomaterials Science, 2020, 8, 353-369.	2.6	53
31	Light-activated oxygen self-supplied starving therapy in near-infrared (NIR) window and adjuvant hyperthermia-induced tumor ablation with an augmented sensitivity. Biomaterials, 2020, 234, 119771.	5.7	59
32	A bottlebrush-architectured dextran polyprodrug as an acidity-responsive vector for enhanced chemotherapy efficiency. Biomaterials Science, 2020, 8, 473-484.	2.6	29
33	Reactive oxygen species-activatable camptothecin polyprodrug based dextran enhances chemotherapy efficacy by damaging mitochondria. Journal of Materials Chemistry B, 2020, 8, 1245-1255.	2.9	9
34	Rational design of oxygen deficient TiO _{2â^'x} nanoparticles conjugated with chlorin e6 (Ce6) for photoacoustic imaging-guided photothermal/photodynamic dual therapy of cancer. Nanoscale, 2020, 12, 1707-1718.	2.8	23
35	Facile synthesis of hollow mesoporous nickel sulfide nanoparticles for highly efficient combinatorial photothermal–chemotherapy of cancer. Journal of Materials Chemistry B, 2020, 8, 7766-7776.	2.9	15
36	Biomimetic CoO@AuPt nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy. Biomaterials, 2020, 257, 120279.	5.7	99

#	Article	IF	CITATIONS
37	Serial Separation of Microalgae in a Microfluidic Chip Under Inertial and Dielectrophoretic Forces. IEEE Sensors Journal, 2020, 20, 14607-14616.	2.4	14
38	Glutathione-Responsive Multifunctional "Trojan Horse―Nanogel as a Nanotheranostic for Combined Chemotherapy and Photodynamic Anticancer Therapy. ACS Applied Materials & Interfaces, 2020, 12, 50896-50908.	4.0	37
39	The synthesis of two-dimensional Bi ₂ Te ₃ @SiO ₂ core–shell nanosheets for fluorescence/photoacoustic/infrared (FL/PA/IR) tri-modal imaging-guided photothermal/photodynamic combination therapy. Biomaterials Science, 2020, 8, 5874-5887.	2.6	7
40	A HMCuS@MnO ₂ nanocomplex responsive to multiple tumor environmental clues for photoacoustic/fluorescence/magnetic resonance trimodal imaging-guided and enhanced photothermal/photodynamic therapy. Nanoscale, 2020, 12, 12508-12521.	2.8	31
41	Scaffold-Free tissue engineering with aligned bone marrow stromal cell sheets to recapitulate the microstructural and biochemical composition of annulus fibrosus. Acta Biomaterialia, 2020, 107, 129-137.	4.1	15
42	A numerical study on ion concentration polarization and electric circuit performance of an electrokinetic battery. Electrophoresis, 2020, 41, 811-820.	1.3	3
43	Surface modifications to polydimethylsiloxane substrate for stabilizing prolonged bone marrow stromal cell culture. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110995.	2.5	13
44	Prodrugâ€Based Versatile Nanomedicine for Enhancing Cancer Immunotherapy by Increasing Immunogenic Cell Death. Small, 2020, 16, e2000214.	5.2	73
45	Development and prospects of microfluidic platforms for sperm inspection. Analytical Methods, 2019, 11, 4547-4560.	1.3	6
46	Codelivery of doxorubicin and camptothecin by dual-responsive unimolecular micelle-based β-cyclodextrin for enhanced chemotherapy. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110428.	2.5	27
47	Biomineralization-inspired Crystallization of Manganese Oxide on Silk Fibroin Nanoparticles for <i>in vivo</i> MR/fluorescence Imaging-assisted Tri-modal Therapy of Cancer. Theranostics, 2019, 9, 6314-6333.	4.6	67
48	Mitochondria-Specific Anticancer Drug Delivery Based on Reduction-Activated Polyprodrug for Enhancing the Therapeutic Effect of Breast Cancer Chemotherapy. ACS Applied Materials & Interfaces, 2019, 11, 29330-29340.	4.0	30
49	Novel Oxygen-Deficient Zirconia (ZrO _{2–<i>x</i>}) for Fluorescence/Photoacoustic Imaging-Guided Photothermal/Photodynamic Therapy for Cancer. ACS Applied Materials & Interfaces, 2019, 11, 41127-41139.	4.0	35
50	Transdermal delivery of therapeutics through dissolvable gelatin/sucrose films coated on PEGDA microneedle arrays with improved skin permeability. Journal of Materials Chemistry B, 2019, 7, 7515-7524.	2.9	29
51	Co-delivery of chlorin e6 and doxorubicin using PEGylated hollow nanocapsules for â€ [~] all-in-one' tumor theranostics. Nanomedicine, 2019, 14, 2273-2292.	1.7	6
52	Smart Unimolecular Micelle-Based Polyprodrug with Dual-Redox Stimuli Response for Tumor Microenvironment: Enhanced in Vivo Delivery Efficiency and Tumor Penetration. ACS Applied Materials & Interfaces, 2019, 11, 36130-36140.	4.0	56
53	Tumor-Microenvironment-Activatable Nanoreactor Based on a Polyprodrug for Multimodal-Imaging-Medicated Enhanced Cancer Chemo/Phototherapy. ACS Applied Materials & Interfaces, 2019, 11, 40704-40715.	4.0	29
54	Modulation of drug release by decoration with Pluronic F127 to improve anti-colon cancer activity of electrospun fibrous meshes. Materials Science and Engineering C, 2019, 99, 591-598.	3.8	8

#	Article	IF	CITATIONS
55	Highly Porous Silk Fibroin Scaffold Packed in PEGDA/Sucrose Microneedles for Controllable Transdermal Drug Delivery. Biomacromolecules, 2019, 20, 1334-1345.	2.6	69
56	Construction of a Polypyrrole-Based Multifunctional Nanocomposite for Dual-Modal Imaging and Enhanced Synergistic Phototherapy against Cancer Cells. Langmuir, 2019, 35, 9246-9254.	1.6	12
57	Rapid prototyping of Nanoroughened polydimethylsiloxane surfaces for the enhancement of immunomagnetic isolation and recovery of rare tumor cells. Biomedical Microdevices, 2019, 21, 58.	1.4	6
58	Freeze-drying prepared ready-to-use gelatin @polypropylene nonwoven hybrid sheet for stacking 3D cell culture. Cellulose, 2019, 26, 6755-6768.	2.4	4
59	Enhanced Tumor Penetration and Chemotherapy Efficiency by Covalent Self-Assembled Nanomicelle Responsive to Tumor Microenvironment. Biomacromolecules, 2019, 20, 2637-2648.	2.6	19
60	Multi-chamber petaloid root-growth chip for the non-destructive study of the development and physiology of the fibrous root system of <i>Oryza sativa</i> . Lab on A Chip, 2019, 19, 2383-2393.	3.1	13
61	Stimuli responsive PEGylated bismuth selenide hollow nanocapsules for fluorescence/CT imaging and light-driven multimodal tumor therapy. Biomaterials Science, 2019, 7, 3025-3040.	2.6	24
62	Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials, 2019, 212, 39-54.	5.7	181
63	Indocyanine green-modified hollow mesoporous Prussian blue nanoparticles loading doxorubicin for fluorescence-guided tri-modal combination therapy of cancer. Nanoscale, 2019, 11, 5717-5731.	2.8	64
64	Recent advances in thread-based microfluidics for diagnostic applications. Biosensors and Bioelectronics, 2019, 132, 171-185.	5.3	78
65	Microfluidics-based fundamental characterization of external concentration polarization in forward osmosis. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	6
66	Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy. Colloids and Surfaces B: Biointerfaces, 2019, 177, 399-406.	2.5	41
67	A Microfluidic Prototype System towards Microalgae Cell Separation, Treatment and Viability Characterization. Sensors, 2019, 19, 4940.	2.1	8
68	A novel microfluidic capture and monitoring method for assessing physiological damage of <i>C. elegans</i> under microgravity. Electrophoresis, 2019, 40, 922-929.	1.3	7
69	Oral administration of colitis tissue-accumulating porous nanoparticles for ulcerative colitis therapy. International Journal of Pharmaceutics, 2019, 557, 135-144.	2.6	41
70	Spontaneous formation of tumor spheroid on a hydrophilic filter paper for cancer stem cell enrichment. Colloids and Surfaces B: Biointerfaces, 2019, 174, 426-434.	2.5	16
71	PECylated mesoporous Bi2S3 nanostars loaded with chlorin e6 and doxorubicin for fluorescence/CT imaging-guided multimodal therapy of cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 1-12.	1.7	27
72	Starburst Diblock Polyprodrugs: Reduction-Responsive Unimolecular Micelles with High Drug Loading and Robust Micellar Stability for Programmed Delivery of Anticancer Drugs. Biomacromolecules, 2019, 20, 1190-1202.	2.6	44

#	Article	IF	CITATIONS
73	Phase-Change Material Packaged within Hollow Copper Sulfide Nanoparticles Carrying Doxorubicin and Chlorin e6 for Fluorescence-Guided Trimodal Therapy of Cancer. ACS Applied Materials & Interfaces, 2019, 11, 417-429.	4.0	84
74	Enhanced Photoacoustic and Photothermal Effect of Functionalized Polypyrrole Nanoparticles for Near-Infrared Theranostic Treatment of Tumor. Biomacromolecules, 2019, 20, 401-411.	2.6	41
75	Oral Drug Delivery Systems for Ulcerative Colitis Therapy: A Comparative Study with Microparticles and Nanoparticles. Current Cancer Drug Targets, 2019, 19, 304-311.	0.8	14
76	Theranostic nanoplatform based on polypyrrole nanoparticles for photoacoustic imaging and photothermal therapy. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	20
77	Threeâ€dimensional microfluidic chip with twinâ€layer herringbone structure for high efficient tumor cell capture and release via antibodyâ€conjugated magnetic microbeads. Electrophoresis, 2018, 39, 1452-1459.	1.3	17
78	3D-Printed seed planter and well array for high-throughput seed germination screening. Integrative Biology (United Kingdom), 2018, 10, 67-73.	0.6	3
79	The Insertion Mechanism of a Living Cell Determined by the Stress Segmentation Effect of the Cell Membrane during the Tip–Cell Interaction. Small, 2018, 14, e1703868.	5.2	14
80	Water-soluble fluorescent unimolecular micelles: ultra-small size, tunable fluorescence emission from the visible to NIR region and enhanced biocompatibility for <i>in vitro</i> and <i>in vivo</i> bioimaging. Chemical Communications, 2018, 54, 6252-6255.	2.2	20
81	Reduction-active polymeric prodrug micelles based on α-cyclodextrin polyrotaxanes for triggered drug release and enhanced cancer therapy. Carbohydrate Polymers, 2018, 193, 153-162.	5.1	34
82	Polydopamineâ€collagen complex to enhance the biocompatibility of polydimethylsiloxane substrates for sustaining longâ€ŧerm culture of L929 fibroblasts and tendon stem cells. Journal of Biomedical Materials Research - Part A, 2018, 106, 408-418.	2.1	27
83	PEGylated magnetic Prussian blue nanoparticles as a multifunctional therapeutic agent for combined targeted photothermal ablation and pH-triggered chemotherapy of tumour cells. Journal of Colloid and Interface Science, 2018, 509, 384-394.	5.0	34
84	PEGylated Polydopamine Nanoparticles Incorporated with Indocyanine Green and Doxorubicin for Magnetically Guided Multimodal Cancer Therapy Triggered by Near-Infrared Light. ACS Applied Nano Materials, 2018, 1, 325-336.	2.4	34
85	Reduction stimuli-responsive unimolecular polymeric prodrug based on amphiphilic dextran-framework for antitumor drug delivery. Carbohydrate Polymers, 2018, 182, 235-244.	5.1	42
86	A simple technique of constructing nano-roughened polydimethylsiloxane surface to enhance mesenchymal stem cell adhesion and proliferation. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	27
87	Acid-active supramolecular anticancer nanoparticles based on cyclodextrin polyrotaxanes damaging both mitochondria and nuclei of tumor cells. Biomaterials Science, 2018, 6, 3126-3138.	2.6	25
88	Orange, yellow and blue luminescent carbon dots controlled by surface state for multicolor cellular imaging, light emission and illumination. Mikrochimica Acta, 2018, 185, 539.	2.5	44
89	Indocyanine Green-Conjugated Magnetic Prussian Blue Nanoparticles for Synchronous Photothermal/Photodynamic Tumor Therapy. Nano-Micro Letters, 2018, 10, 74.	14.4	81
90	Injectable and Natural Humic Acid/Agarose Hybrid Hydrogel for Localized Light-Driven Photothermal Ablation and Chemotherapy of Cancer. ACS Biomaterials Science and Engineering, 2018, 4, 4266-4277.	2.6	41

#	Article	IF	CITATIONS
91	Calcium-carbonate packaging magnetic polydopamine nanoparticles loaded with indocyanine green for near-infrared induced photothermal/photodynamic therapy. Acta Biomaterialia, 2018, 81, 242-255.	4.1	53
92	PEGDA/PVP Microneedles with Tailorable Matrix Constitutions for Controllable Transdermal Drug Delivery. Macromolecular Materials and Engineering, 2018, 303, 1800233.	1.7	31
93	Blood sampling using microneedles as a minimally invasive platform for biomedical diagnostics. Applied Materials Today, 2018, 13, 144-157.	2.3	41
94	Light-activatable Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged Prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer. Biomaterials Science, 2018, 6, 2881-2895.	2.6	56
95	Irinotecan delivery by unimolecular micelles composed of reduction-responsive star-like polymeric prodrug with high drug loading for enhanced cancer therapy. Colloids and Surfaces B: Biointerfaces, 2018, 170, 488-496.	2.5	16
96	Cellular Uptake Behaviors of Rigidity-Tunable Dendrimers. Pharmaceutics, 2018, 10, 99.	2.0	4
97	Development of Multifunctional Polydopamine Nanoparticles As a Theranostic Nanoplatform against Cancer Cells. Langmuir, 2018, 34, 9516-9524.	1.6	42
98	Methotrexate-based amphiphilic prodrug nanoaggregates for co-administration of multiple therapeutics and synergistic cancer therapy. Acta Biomaterialia, 2018, 77, 228-239.	4.1	41
99	Facile fabrication of bowl-shaped microparticles for oral curcumin delivery to ulcerative colitis tissue. Colloids and Surfaces B: Biointerfaces, 2018, 169, 92-98.	2.5	25
100	A paper-based photothermal array using Parafilm to analyze hyperthermia response of tumour cells under local gradient temperature. Biomedical Microdevices, 2018, 20, 68.	1.4	5
101	Improving the carrier stability and drug loading of unimolecular micelle-based nanotherapeutics for acid-activated drug delivery and enhanced antitumor therapy. Journal of Materials Chemistry B, 2018, 6, 5549-5561.	2.9	10
102	Green Fabrication of Ovalbumin Nanoparticles as Natural Polyphenol Carriers for Ulcerative Colitis Therapy. ACS Sustainable Chemistry and Engineering, 2018, 6, 12658-12667.	3.2	57
103	TNFα gene silencing mediated by orally targeted nanoparticles combined with interleukin-22 for synergistic combination therapy of ulcerative colitis. Journal of Controlled Release, 2018, 287, 235-246.	4.8	96
104	Silencing of Intestinal Glycoprotein CD98 by Orally Targeted Nanoparticles Enhances Chemosensitization of Colon Cancer. ACS Nano, 2018, 12, 5253-5265.	7.3	78
105	Chitosan functionalization to prolong stable hydrophilicity of cotton thread for thread-based analytical device application. Cellulose, 2018, 25, 4831-4840.	2.4	21
106	Precise Enumeration of Circulating Tumor Cells Using Support Vector Machine Algorithm on a Microfluidic Sensor. IEEE Transactions on Emerging Topics in Computing, 2017, 5, 518-525.	3.2	22
107	Rapidly cell-penetrating and reductive milieu-responsive nanoaggregates assembled from an amphiphilic folate-camptothecin prodrug for enhanced drug delivery and controlled release. Biomaterials Science, 2017, 5, 444-454.	2.6	43
108	Orally Targeted Delivery of Tripeptide KPV via Hyaluronic Acid-Functionalized Nanoparticles Efficiently Alleviates Ulcerative Colitis. Molecular Therapy, 2017, 25, 1628-1640.	3.7	138

#	Article	IF	CITATIONS
109	All-organic luminescent nanodots from corannulene and cyclodextrin nano-assembly: continuous-flow synthesis, non-linear optical properties, and bio-imaging applications. Materials Chemistry Frontiers, 2017, 1, 831-837.	3.2	15
110	Gemcitabine–camptothecin conjugates: a hybrid prodrug for controlled drug release and synergistic therapeutics. Biomaterials Science, 2017, 5, 1889-1897.	2.6	43
111	Multifunctional silica nanoparticles as a promising theranostic platform for biomedical applications. Materials Chemistry Frontiers, 2017, 1, 1257-1272.	3.2	85
112	A multiâ€module microfluidic platform for continuous preâ€concentration of waterâ€soluble ions and separation of oil droplets from oilâ€inâ€water (O/W) emulsions using a DCâ€biased AC electrokinetic technique. Electrophoresis, 2017, 38, 645-652.	1.3	16
113	pH-responsive polymeric micelles based on poly(ethyleneglycol)-b-poly(2-(diisopropylamino) ethyl) Tj ETQq1 1 C Colloid and Interface Science, 2017, 490, 511-519.).784314 r 5.0	gBT /Overloci 41
114	Acid-Activatable Theranostic Unimolecular Micelles Composed of Amphiphilic Star-like Polymeric Prodrug with High Drug Loading for Enhanced Cancer Therapy. Molecular Pharmaceutics, 2017, 14, 4032-4041.	2.3	33
115	Redefining Chinese calligraphy rice paper: an economical and cytocompatible substrate for cell biological assays. RSC Advances, 2017, 7, 41017-41023.	1.7	8
116	PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells. Colloids and Surfaces B: Biointerfaces, 2017, 160, 11-21.	2.5	51
117	Surface Modification of Poly(dimethylsiloxane) with Polydopamine and Hyaluronic Acid To Enhance Hemocompatibility for Potential Applications in Medical Implants or Devices. ACS Applied Materials & Interfaces, 2017, 9, 33632-33644.	4.0	85
118	Highly cell-penetrating and ultra-pH-responsive nanoplatform for controlled drug release and enhanced tumor therapy. Colloids and Surfaces B: Biointerfaces, 2017, 159, 484-492.	2.5	9
119	pH-Responsive unimolecular micelles based on amphiphilic star-like copolymers with high drug loading for effective drug delivery and cellular imaging. Journal of Materials Chemistry B, 2017, 5, 6847-6859.	2.9	44
120	iRGD-functionalized PECylated nanoparticles for enhanced colon tumor accumulation and targeted drug delivery. Nanomedicine, 2017, 12, 1991-2006.	1.7	27
121	Probing of peripheral blood mononuclear cells anchoring on TNF-alpha challenged-vascular endothelia in an in vitro model of the retinal microvascular. Biomedical Microdevices, 2017, 19, 54.	1.4	4
122	Disassembly of amphiphilic small molecular prodrug with fluorescence switch induced by pH and folic acid receptors for targeted delivery and controlled release. Colloids and Surfaces B: Biointerfaces, 2017, 150, 50-58.	2.5	32
123	Noninvasive Monitoring of Three-Dimensional Chondrogenic Constructs Using Molecular Beacon Nanosensors. Tissue Engineering - Part C: Methods, 2017, 23, 12-20.	1.1	11
124	Porous Prussian Blue Nanocubes as Photothermal Ablation Agents for Efficient Cancer Therapy. Journal of Nanoscience and Nanotechnology, 2017, 17, 168-174.	0.9	6
125	Combination Therapy for Ulcerative Colitis: Orally Targeted Nanoparticles Prevent Mucosal Damage and Relieve Inflammation. Theranostics, 2016, 6, 2250-2266.	4.6	174
126	A Threeâ€Photon Active Organic Fluorophore for Deep Tissue Ratiometric Imaging of Intracellular Divalent Zinc. Chemistry - an Asian Journal, 2016, 11, 1523-1527.	1.7	11

#	Article	IF	CITATIONS
127	Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Scientific Reports, 2016, 5, 18162.	1.6	200
128	Isolation and retrieval of circulating tumor cells on a microchip with double parallel layers of herringbone structure. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	8
129	Real time monitoring of aminothiol level in blood using a near-infrared dye assisted deep tissue fluorescence and photoacoustic bimodal imaging. Chemical Science, 2016, 7, 4110-4116.	3.7	63
130	Biomassâ€Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Directâ€Electronâ€Transferâ€Based Glucose Sensing. ChemElectroChem, 2016, 3, 144-151.	1.7	26
131	Long-Term Tracking Mesenchymal Stem Cell Differentiation with Photostable Fluorescent Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 11925-11933.	4.0	28
132	Confocal Laser Scanning Microscopy-Compatible Microfluidic Membrane Flow Cell as a Nondestructive Tool for Studying Biofouling Dynamics on Forward Osmosis Membranes. Environmental Science and Technology Letters, 2016, 3, 303-309.	3.9	28
133	A membrane-free micro-fluidic microbial fuel cell for rapid characterization of exoelectrogenic bacteria. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	5
134	Functional magnetic Prussian blue nanoparticles for enhanced gene transfection and photothermal ablation of tumor cells. Journal of Materials Chemistry B, 2016, 4, 4717-4725.	2.9	22
135	The role of bifurcation angles on collective smooth muscle cell biomechanics and the implication in atherosclerosis development. Biomaterials Science, 2016, 4, 430-438.	2.6	5
136	Single-layer MoS ₂ nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy. Nanoscale, 2016, 8, 7861-7865.	2.8	84
137	A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening. Biomedical Microdevices, 2016, 18, 21.	1.4	77
138	CMOS-Compatible Silicon-Nanowire-Based Coulter Counter for Cell Enumeration. IEEE Transactions on Biomedical Engineering, 2016, 63, 311-315.	2.5	15
139	Dual characterization of biological cells by optofluidic microscope and resistive pulse sensor. Electrophoresis, 2015, 36, 420-423.	1.3	10
140	Living Cells Directly Growing on a DNA/Mn ₃ (PO ₄) ₂ â€Immobilized and Vertically Aligned CNT Array as a Free‣tanding Hybrid Film for Highly Sensitive In Situ Detection of Released Superoxide Anions. Advanced Functional Materials, 2015, 25, 5924-5932.	7.8	51
141	Numerical and experimental characterization of solidâ€state microporeâ€based cytometer for detection and enumeration of biological cells. Electrophoresis, 2015, 36, 737-743.	1.3	12
142	Biomechanistic Study of Smooth Muscle Cell Sheet during Circumferential Alignment in Circular Micropatterns. ACS Biomaterials Science and Engineering, 2015, 1, 549-558.	2.6	6
143	Near-Infrared Squaraine Dye Encapsulated Micelles for <i>in Vivo</i> Fluorescence and Photoacoustic Bimodal Imaging. ACS Nano, 2015, 9, 5695-5704.	7.3	145
144	Combinatorial effect of substratum properties on mesenchymal stem cell sheet engineering and subsequent multi-lineage differentiation. Acta Biomaterialia, 2015, 23, 52-62.	4.1	44

#	Article	IF	CITATIONS
145	Differential microfluidic sensor on printed circuit board for biological cells analysis. Electrophoresis, 2015, 36, 1854-1858.	1.3	21
146	Long term effects of substrate stiffness on the development of hMSC mechanical properties. RSC Advances, 2015, 5, 105651-105660.	1.7	13
147	Near-IR squaraine dye–loaded gated periodic mesoporous organosilica for photo-oxidation of phenol in a continuous-flow device. Science Advances, 2015, 1, e1500390.	4.7	24
148	An in-vitro study of enzyme-responsive Prussian blue nanoparticles for combined tumor chemotherapy and photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2015, 125, 277-283.	2.5	47
149	Glutathione- and pH-responsive nonporous silica prodrug nanoparticles for controlled release and cancer therapy. Nanoscale, 2015, 7, 5859-5868.	2.8	124
150	Simple and low cost integration of highly conductive three-dimensional electrodes in microfluidic devices. Biomedical Microdevices, 2015, 17, 4.	1.4	26
151	Volumetric measurement of human red blood cells by MOSFETâ€based microfluidic gate. Electrophoresis, 2015, 36, 1862-1865.	1.3	10
152	Radiation dominated acoustophoresis driven by surface acoustic waves. Journal of Colloid and Interface Science, 2015, 455, 203-211.	5.0	44
153	Disposable microfluidic channel with dielectric layer on PCB for AC sensing of biological cells. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 1439-1443.	1.8	17
154	Microfluidic Assay To Study the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration. ACS Applied Materials & Interfaces, 2015, 7, 17095-17103.	4.0	24
155	Glutathione-Responsive Polymeric Micelles Formed by a Biodegradable Amphiphilic Triblock Copolymer for Anticancer Drug Delivery and Controlled Release. ACS Biomaterials Science and Engineering, 2015, 1, 585-592.	2.6	78
156	Unimolecular micelles of amphiphilic cyclodextrin-core star-like block copolymers for anticancer drug delivery. Chemical Communications, 2015, 51, 15768-15771.	2.2	102
157	Portable Coulter counter with vertical through-holes for high-throughput applications. Sensors and Actuators B: Chemical, 2015, 213, 375-381.	4.0	12
158	Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays. Biomedical Microdevices, 2015, 17, 39.	1.4	19
159	A Compact Optofluidic Cytometer for Detection and Enumeration of Tumor Cells. Journal of Lightwave Technology, 2015, 33, 3433-3438.	2.7	21
160	Magnetic Prussian blue nanoparticles for combined enzyme-responsive drug release and photothermal therapy. RSC Advances, 2015, 5, 28401-28409.	1.7	26
161	Two dimensional atomically thin MoS ₂ nanosheets and their sensing applications. Nanoscale, 2015, 7, 19358-19376.	2.8	217
162	Flexible PEGDA-based microneedle patches with detachable PVP–CD arrowheads for transdermal drug delivery. RSC Advances, 2015, 5, 75204-75209.	1.7	40

#	Article	IF	CITATIONS
163	An in vitro study on the collective tumor cell migration on nanoroughened poly(dimethylsiloxane) surfaces. Journal of Materials Chemistry B, 2015, 3, 1565-1572.	2.9	8
164	Nano metal–organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale, 2015, 7, 1753-1759.	2.8	129
165	Highly fluorescent and bioresorbable polymeric nanoparticles with enhanced photostability for cell imaging. Nanoscale, 2015, 7, 889-895.	2.8	46
166	Dual Fluorescence-Activated Study of Tumor Cell Apoptosis by an Optofluidic System. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 392-398.	1.9	15
167	The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. Biomaterials Science, 2015, 3, 383-390.	2.6	92
168	Three-dimensional development of tensile pre-strained annulus fibrosus cells for tissue regeneration: An in-vitro study. Experimental Cell Research, 2015, 331, 176-182.	1.2	7
169	Microfluidic synthesis of monodisperse PEGDA microbeads for sustained release of 5-fluorouracil. Microfluidics and Nanofluidics, 2015, 18, 333-342.	1.0	27
170	Drug-eluting microneedles for self-administered treatment of keloids. Technology, 2014, 02, 144-152.	1.4	24
171	Portable resistive pulse-activated lens-free cell imaging system. RSC Advances, 2014, 4, 56342-56345.	1.7	17
172	A microfluidic co-culture system to monitor tumor-stromal interactions on a chip. Biomicrofluidics, 2014, 8, 064118.	1.2	46
173	Design of a Fluidic Circuit-Based Microcytometer for Circulating Tumor Cell Detection and Enumeration. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8, 35-41.	2.7	29
174	Multiplexed Biomolecular Detection Based on Single Nanoparticles Immobilized on Pneumatically Controlled Microfluidic Chip. Plasmonics, 2014, 9, 801-807.	1.8	7
175	A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosensors and Bioelectronics, 2014, 52, 180-187.	5.3	175
176	Energy Conversion from Salinity Gradients by Forward Osmosis–Electrokinetics. Journal of Physical Chemistry C, 2014, 118, 10574-10583.	1.5	21
177	RF-Activated Standing Surface Acoustic Wave for On-Chip Particle Manipulation. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 1898-1904.	2.9	21
178	Protein Covalently Conjugated SU-8 Surface for the Enhancement of Mesenchymal Stem Cell Adhesion and Proliferation. Langmuir, 2014, 30, 3110-3117.	1.6	27
179	Isolation and elution of Hep3B circulating tumor cells using a dual-functional herringbone chip. Microfluidics and Nanofluidics, 2014, 16, 605-612.	1.0	16
180	A Microfluidic Impedance Cytometer on Printed Circuit Board for Low Cost Diagnosis. IEEE Sensors Journal, 2014, 14, 2112-2117.	2.4	26

#	Article	IF	CITATIONS
181	Electrochemical―and Fluorescentâ€Mediated Signal Amplifications for Rapid Detection of Lowâ€Abundance Circulating Tumor Cells on a Paperâ€Based Microfluidic Immunodevice. ChemElectroChem, 2014, 1, 722-727.	1.7	23
182	PDMS-film coated on PCB for AC impedance sensing of biological cells. Biomedical Microdevices, 2014, 16, 681-686.	1.4	33
183	A Contact-Imaging Based Microfluidic Cytometer with Machine-Learning for Single-Frame Super-Resolution Processing. PLoS ONE, 2014, 9, e104539.	1.1	55
184	Paper-Based Microfluidic Electrochemical Immunodevice Integrated with Nanobioprobes onto Graphene Film for Ultrasensitive Multiplexed Detection of Cancer Biomarkers. Analytical Chemistry, 2013, 85, 8661-8668.	3.2	211
185	Electrokinetic Analysis of Cell Translocation in Low-Cost Microfluidic Cytometry for Tumor Cell Detection and Enumeration. IEEE Transactions on Biomedical Engineering, 2013, 60, 3269-3275.	2.5	27
186	Small-Size Coupled-Fed Antenna With Two Printed Distributed Inductors for Seven-Band WWAN/LTE Mobile Handset. IEEE Transactions on Antennas and Propagation, 2013, 61, 5780-5784.	3.1	49
187	3 <scp>D</scp> numerical simulation of a <scp>C</scp> oulter counter array with analysis of electrokinetic forces. Electrophoresis, 2013, 34, 417-424.	1.3	25
188	Surface Chemical Modification of Poly(dimethylsiloxane) for the Enhanced Adhesion and Proliferation of Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2013, 5, 9777-9784.	4.0	178
189	Highly Specific and Ultrasensitive Graphene-Enhanced Electrochemical Detection of Low-Abundance Tumor Cells Using Silica Nanoparticles Coated with Antibody-Conjugated Quantum Dots. Analytical Chemistry, 2013, 85, 3166-3173.	3.2	108
190	A Microfluidic Cell Size/Density Sensor by Resistive Pulse Detection. Electroanalysis, 2013, 25, 1023-1028.	1.5	13
191	RF-activated surface standing acoustic wave for on-chip controllably aligning of bio-microparticles. , 2013, , .		3
192	Geometrical, Topographical, and Mechanical Cues on Stem Cell Fate in a Micro-/Nano-environment. , 2013, , 1-8.		2
193	Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Molecular and Cellular Endocrinology, 2012, 362, 227-241.	1.6	89
194	Electrokinetic Flow in Porous Media. , 2011, , 1-14.		0
195	Continuous particle separation by size <i>via</i> ACâ€dielectrophoresis using a labâ€onâ€aâ€chip device with 3â€D electrodes. Electrophoresis, 2009, 30, 766-772.	1.3	65
196	Experimental characterization of electrical current leakage in poly(dimethylsiloxane) microfluidic devices. Microfluidics and Nanofluidics, 2009, 6, 589-598.	1.0	14
197	Electrokinetic motion of particles and cells in microchannels. Microfluidics and Nanofluidics, 2009, 6, 431-460.	1.0	171
198	Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochimica Acta, 2009, 54, 1715-1720.	2.6	113

#	Article	IF	CITATIONS
199	DC-Dielectrophoretic separation of biological cells by size. Biomedical Microdevices, 2008, 10, 243-249.	1.4	243
200	Microfluidic differential resistive pulse sensors. Electrophoresis, 2008, 29, 2754-2759.	1.3	59
201	On-chip fluorescence-activated particle counting and sorting system. Analytica Chimica Acta, 2008, 626, 97-103.	2.6	22
202	On-chip counting the number and the percentage of CD4+ T lymphocytes. Lab on A Chip, 2008, 8, 309-315.	3.1	71
203	Simultaneous particle counting and detecting on a chip. Lab on A Chip, 2008, 8, 1943.	3.1	59
204	Experimental characterization of a metal-oxide-semiconductor field-effect transistor-based Coulter counter. Journal of Applied Physics, 2008, 103, 104701-10470110.	1.1	37
205	Electrical Leakage Through Thin PDMS Microchannel Walls and its Applications. , 2008, , .		Ο
206	Ultrasensitive Micro/Nanoscale Resistive Pulse Sensors by Integrating Fluidic Devices With MOSFETs. , 2008, , .		0
207	Wide-spectrum, ultrasensitive fluidic sensors with amplification from both fluidic circuits and metal oxide semiconductor field effect transistors. Applied Physics Letters, 2007, 91, .	1.5	28
208	Electrokinetic pumping using packed microcapillary. Sensors and Actuators A: Physical, 2007, 133, 375-382.	2.0	28
209	Ultra-Sensitive Fluidic Sensors by Integrating Fluidic Circuits and MOSFETs. , 2007, , .		Ο
210	Effects of dc-dielectrophoretic force on particle trajectories in microchannels. Journal of Applied Physics, 2006, 99, 064702.	1.1	104
211	Continuous separation of microparticles by size with Direct current-dielectrophoresis. Electrophoresis, 2006, 27, 694-702.	1.3	181
212	Transient Joule Heating and Its Effects on Electroosmotic Flow in a Microcapillary Packed Wth Microspheres. , 2005, , 433.		0
213	Analysis of electroosmotic flow in a microchannel packed with microspheres. Microfluidics and Nanofluidics, 2005, 1, 168-176.	1.0	15
214	Frequency-dependent velocity and vorticity fields of electro-osmotic flow in a closed-end cylindrical microchannel. Journal of Micromechanics and Microengineering, 2005, 15, 301-312.	1,5	22
215	Joule Heating Induced Transient Temperature Field and Its Effects on Electroosmosis in a Microcapillary Packed with Microspheres. Langmuir, 2005, 21, 7598-7607.	1.6	18
216	AC electroosmosis in microchannels packed with a porous medium. Journal of Micromechanics and Microengineering, 2004, 14, 1249-1257.	1.5	17

#	Article	IF	CITATIONS
217	Analysis of the electroosmotic flow in a microchannel packed with homogeneous microspheres under electrokinetic wall effect. International Journal of Engineering Science, 2004, 42, 2011-2027.	2.7	24
218	Electroosmotic Flow in a Capillary Annulus with High Zeta Potentials. Journal of Colloid and Interface Science, 2002, 253, 285-294.	5.0	155
219	Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 2002, 40, 2203-2221.	2.7	163