James Briscoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2883771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The mechanisms of Hedgehog signalling and its roles in development and disease. Nature Reviews Molecular Cell Biology, 2013, 14, 416-429.	37.0	1,473
2	A Homeodomain Protein Code Specifies Progenitor Cell Identity and Neuronal Fate in the Ventral Neural Tube. Cell, 2000, 101, 435-445.	28.9	1,065
3	Pax6 Controls Progenitor Cell Identity and Neuronal Fate in Response to Graded Shh Signaling. Cell, 1997, 90, 169-180.	28.9	939
4	The protein tyrosine kinase JAK1 complements defects in interferon-α/β and -γ signal transduction. Nature, 1993, 366, 129-135.	27.8	785
5	Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature, 1999, 398, 622-627.	27.8	687
6	Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development (Cambridge), 2008, 135, 2489-2503.	2.5	640
7	Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature, 2007, 450, 717-720.	27.8	539
8	Specification of neuronal fates in the ventral neural tube. Current Opinion in Neurobiology, 2001, 11, 43-49.	4.2	482
9	The interpretation of morphogen gradients. Development (Cambridge), 2006, 133, 385-394.	2.5	422
10	Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient in the Vertebrate Neural Tube. Cell, 2012, 148, 273-284.	28.9	417
11	Neural crest development is regulated by the transcription factor Sox9. Development (Cambridge), 2003, 130, 5681-5693.	2.5	410
12	Morphogen rules: design principles of gradient-mediated embryo patterning. Development (Cambridge), 2015, 142, 3996-4009.	2.5	402
13	Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways EMBO Journal, 1993, 12, 4221-4228.	7.8	381
14	A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6 EMBO Journal, 1995, 14, 1421-1429.	7.8	376
15	The Transcriptional Control of Trunk Neural Crest Induction, Survival, and Delamination. Developmental Cell, 2005, 8, 179-192.	7.0	360
16	A Hedgehog-Insensitive Form of Patched Provides Evidence for Direct Long-Range Morphogen Activity of Sonic Hedgehog in the Neural Tube. Molecular Cell, 2001, 7, 1279-1291.	9.7	341
17	In Vitro Generation of Neuromesodermal Progenitors Reveals Distinct Roles for Wnt Signalling in the Specification of Spinal Cord and Paraxial Mesoderm Identity. PLoS Biology, 2014, 12, e1001937.	5.6	311
18	SOX9 induces and maintains neural stem cells. Nature Neuroscience, 2010, 13, 1181-1189.	14.8	287

#	Article	IF	CITATIONS
19	Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes and Development, 2002, 16, 2865-2878.	5.9	283
20	A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes and Development, 2005, 19, 626-641.	5.9	247
21	Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord. Development (Cambridge), 2019, 146, .	2.5	245
22	Ventral neural patterning by <i>Nkx</i> homeobox genes: <i>Nkx6.1</i> controls somatic motor neuron and ventral interneuron fates. Genes and Development, 2000, 14, 2134-2139.	5.9	232
23	Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development (Cambridge), 2000, 127, 4855-4866.	2.5	229
24	The specification of neuronal identity by graded sonic hedgehog signalling. Seminars in Cell and Developmental Biology, 1999, 10, 353-362.	5.0	213
25	The floor plate: multiple cells, multiple signals. Nature Reviews Neuroscience, 2005, 6, 230-240.	10.2	212
26	A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Development. Developmental Cell, 2017, 41, 243-261.e7.	7.0	210
27	Gli proteins and the control of spinal ord patterning. EMBO Reports, 2003, 4, 761-765.	4.5	209
28	Establishing neuronal diversity in the spinal cord: a time and a place. Development (Cambridge), 2019, 146, .	2.5	208
29	A JAK1/JAK2 Chimera Can Sustain Alpha and Gamma Interferon Responses. Molecular and Cellular Biology, 1997, 17, 695-706.	2.3	195
30	Establishing and Interpreting Graded Sonic Hedgehog Signaling during Vertebrate Neural Tube Patterning: The Role of Negative Feedback. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002014-a002014.	5.5	194
31	Morphogens and the Control of Cell Proliferation and Patterning in the Spinal Cord. Cell Cycle, 2007, 6, 2640-2649.	2.6	189
32	The Kinesin Protein Kif7 Is a Critical Regulator of Cli Transcription Factors in Mammalian Hedgehog Signaling. Science Signaling, 2009, 2, ra29.	3.6	188
33	Dynamic Assignment and Maintenance of Positional Identity in the Ventral Neural Tube by the Morphogen Sonic Hedgehog. PLoS Biology, 2010, 8, e1000382.	5.6	184
34	Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes and Development, 2010, 24, 1186-1200.	5.9	180
35	Oncogenicity of the Developmental Transcription Factor Sox9. Cancer Research, 2012, 72, 1301-1315.	0.9	180
36	Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung's disease in Bardet–Biedl syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6714-6719.	7.1	178

#	Article	IF	CITATIONS
37	Sonic Hedgehog Dependent Phosphorylation by CK1α and GRK2 Is Required for Ciliary Accumulation and Activation of Smoothened. PLoS Biology, 2011, 9, e1001083.	5.6	176
38	Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways. EMBO Journal, 1993, 12, 4221-8.	7.8	165
39	Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state EMBO Journal, 1996, 15, 799-809.	7.8	164
40	The Sonic hedgehog pathway independently controls the patterning,proliferation and survival of neuroepithelial cells by regulating Gli activity. Development (Cambridge), 2006, 133, 517-528.	2.5	164
41	Species-specific pace of development is associated with differences in protein stability. Science, 2020, 369, .	12.6	163
42	Coordination of progenitor specification and growth in mouse and chick spinal cord. Science, 2014, 345, 1254927.	12.6	159
43	A fluorescent reporter of caspase activity for live imaging. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13901-13905.	7.1	154
44	Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nature Biotechnology, 2022, 40, 74-85.	17.5	152
45	A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO Journal, 1995, 14, 1421-9.	7.8	147
46	Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science, 2017, 356, 1379-1383.	12.6	144
47	Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Developmental Biology, 2009, 333, 386-396.	2.0	139
48	Otx2 Regulates Subtype Specification and Neurogenesis in the Midbrain. Journal of Neuroscience, 2005, 25, 4856-4867.	3.6	133
49	Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 57-70.	4.0	132
50	Nervous System Regionalization Entails Axial Allocation before Neural Differentiation. Cell, 2018, 175, 1105-1118.e17.	28.9	128
51	Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nature Communications, 2015, 6, 6709.	12.8	123
52	Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harbor Symposia on Quantitative Biology, 1997, 62, 451-66.	1.1	122
53	c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells. Nature Immunology, 2018, 19, 497-507.	14.5	118
54	Notch Activity Modulates the Responsiveness of Neural Progenitors to Sonic Hedgehog Signaling. Developmental Cell, 2015, 33, 373-387.	7.0	117

#	Article	IF	CITATIONS
55	Morphogen interpretation: concentration, time, competence, and signaling dynamics. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e271.	5.9	117
56	Development-on-chip: <i>in vitro</i> neural tube patterning with a microfluidic device. Development (Cambridge), 2016, 143, 1884-1892.	2.5	116
57	The chicken <i>talpid³</i> gene encodesa novel protein essentialfor Hedgehog signaling. Genes and Development, 2006, 20, 1365-1377.	5.9	112
58	Developmental Pattern Formation: Insights from Physics and Biology. Science, 2012, 338, 210-212.	12.6	105
59	The route to spinal cord cell types: a tale of signals and switches. Trends in Genetics, 2015, 31, 282-289.	6.7	104
60	What does time mean in development?. Development (Cambridge), 2018, 145, .	2.5	102
61	Inhibitory Gli3 Activity Negatively Regulates Wnt/β-Catenin Signaling. Current Biology, 2007, 17, 545-550.	3.9	100
62	Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors. Cell Systems, 2018, 6, 521-530.e3.	6.2	96
63	CRISPR Screens Uncover Genes that Regulate Target Cell Sensitivity to the Morphogen Sonic Hedgehog. Developmental Cell, 2018, 44, 113-129.e8.	7.0	95
64	The transcription factor GATA3 is a downstream effector of <i>Hoxb1</i> specification in rhombomere 4. Development (Cambridge), 1999, 126, 5523-5531.	2.5	94
65	A mutation in Ihh that causes digit abnormalities alters its signalling capacity and range. Nature, 2009, 458, 1196-1200.	27.8	89
66	Integration of Signals along Orthogonal Axes of the Vertebrate Neural Tube Controls Progenitor Competence and Increases Cell Diversity. PLoS Biology, 2014, 12, e1001907.	5.6	88
67	Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs. Developmental Cell, 2016, 36, 639-653.	7.0	87
68	Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development (Cambridge), 2000, 127, 4855-66.	2.5	87
69	Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling. Development (Cambridge), 2010, 137, 4271-4282.	2.5	86
70	Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis. Nature Neuroscience, 2007, 10, 1433-1439.	14.8	85
71	Morphogen interpretation: the transcriptional logic of neural tube patterning. Current Opinion in Genetics and Development, 2013, 23, 423-428.	3.3	84
72	Reduced cholesterol levels impair Smoothened activation in Smith–Lemli–Opitz syndrome. Human Molecular Genetics, 2016, 25, 693-705.	2.9	82

#	Article	IF	CITATIONS
73	Human axial progenitors generate trunk neural crest cells in vitro. ELife, 2018, 7, .	6.0	81
74	Primary cilia and graded Sonic Hedgehog signaling. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 753-772.	5.9	79
75	G protein–coupled receptors control the sensitivity of cells to the morphogen Sonic Hedgehog. Science Signaling, 2018, 11, .	3.6	78
76	Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics. PLoS Biology, 2018, 16, e2003127.	5.6	77
77	JAKs and STATs branch out. Trends in Cell Biology, 1996, 6, 336-340.	7.9	76
78	Canonical BMP7 activity is required for the generation of discrete neuronal populations in the dorsal spinal cord. Development (Cambridge), 2012, 139, 259-268.	2.5	76
79	Phosphorylation of <i>Sox9</i> is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2882-2887.	7.1	76
80	A theoretical framework for the regulation of Shh morphogen-controlled gene expression. Development (Cambridge), 2014, 141, 3868-3878.	2.5	70
81	Generation of mice with functional inactivation of <i>talpid3</i> , a gene first identified in chicken. Development (Cambridge), 2011, 138, 3261-3272.	2.5	66
82	Single-cell transcriptome profiling of the human developing spinal cord reveals a conserved genetic programme with human-specific features. Development (Cambridge), 2021, 148, .	2.5	66
83	Statistically derived geometrical landscapes capture principles of decision-making dynamics during cell fate transitions. Cell Systems, 2022, 13, 12-28.e3.	6.2	66
84	Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state. EMBO Journal, 1996, 15, 799-809.	7.8	66
85	Making a grade: Sonic Hedgehog signalling and the control of neural cell fate. EMBO Journal, 2009, 28, 457-465.	7.8	63
86	Temporal dynamics of patterning by morphogen gradients. Current Opinion in Genetics and Development, 2009, 19, 315-322.	3.3	61
87	Temporal control of BMP signalling determines neuronal subtype identity in the dorsal neural tube. Development (Cambridge), 2013, 140, 1467-1474.	2.5	61
88	A gene regulatory motif that generates oscillatory or multiway switch outputs. Journal of the Royal Society Interface, 2013, 10, 20120826.	3.4	61
89	Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches. PLoS Computational Biology, 2016, 12, e1005154.	3.2	60
90	The generation and diversification of spinal motor neurons: signals and responses. Mechanisms of Development, 2004, 121, 1103-1115.	1.7	56

#	Article	IF	CITATIONS
91	Signal Transduction: Just another signalling pathway. Current Biology, 1994, 4, 1033-1035.	3.9	54
92	Developmental Pattern Formation in Phases. Trends in Cell Biology, 2015, 25, 579-591.	7.9	54
93	The Transcriptional Repressor Glis2 Is a Novel Binding Partner for p120 Catenin. Molecular Biology of the Cell, 2007, 18, 1918-1927.	2.1	53
94	Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain. Development (Cambridge), 2009, 136, 2477-2485.	2.5	50
95	An inducible transgene expression system for zebrafish and chick. Development (Cambridge), 2013, 140, 2235-2243.	2.5	49
96	Epithelial organisation revealed by a network of cellular contacts. Nature Communications, 2011, 2, 526.	12.8	48
97	Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak. PLoS Biology, 2021, 19, e3001200.	5.6	45
98	SUMOylation by Pias1 Regulates the Activity of the Hedgehog Dependent Gli Transcription Factors. PLoS ONE, 2010, 5, e11996.	2.5	45
99	Sonic hedgehog in vertebrate neural tube development. International Journal of Developmental Biology, 2018, 62, 225-234.	0.6	44
100	A shared transcriptional code orchestrates temporal patterning of the central nervous system. PLoS Biology, 2021, 19, e3001450.	5.6	42
101	An intuitive graphical visualization technique for the interrogation of transcriptome data. Nucleic Acids Research, 2011, 39, 7380-7389.	14.5	41
102	Scaling Pattern to Variations in Size during Development of the Vertebrate Neural Tube. Developmental Cell, 2016, 37, 127-135.	7.0	41
103	A call for a better understanding of causation in cell biology. Nature Reviews Molecular Cell Biology, 2019, 20, 261-262.	37.0	41
104	TRF2-independent chromosome end protection during pluripotency. Nature, 2021, 589, 103-109.	27.8	41
105	ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis. Development (Cambridge), 2014, 141, 3966-3977.	2.5	40
106	Precision of tissue patterning is controlled by dynamical properties of gene regulatory networks. Development (Cambridge), 2021, 148, .	2.5	39
107	Establishing neuronal circuitry: Hox genes make the connection. Genes and Development, 2004, 18, 1643-1648.	5.9	38
108	Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord. Cell Death and Differentiation, 2012, 19, 209-219.	11.2	37

#	Article	IF	CITATIONS
109	Valproic Acid silencing of <i>ascl1b/ascl1</i> results in the failure of serotonergic differentiation in a zebrafish model of Fetal Valproate Syndrome. DMM Disease Models and Mechanisms, 2014, 7, 107-17.	2.4	37
110	Mouse mutagenesis identifies novel roles for left–right patterning genes in pulmonary, craniofacial, ocular, and limb development. Developmental Dynamics, 2009, 238, 581-594.	1.8	35
111	Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nature Cell Biology, 2022, 24, 633-644.	10.3	35
112	Morphogens. Current Biology, 2001, 11, R851-R854.	3.9	34
113	An Amphioxus Gli Gene Reveals Conservation of Midline Patterning and the Evolution of Hedgehog Signalling Diversity in Chordates. PLoS ONE, 2007, 2, e864.	2.5	34
114	Anterior <i>Hox</i> Genes Interact with Components of the Neural Crest Specification Network to Induce Neural Crest Fates. Stem Cells, 2011, 29, 858-870.	3.2	29
115	The transition from differentiation to growth during dermomyotome-derived myogenesis depends on temporally restricted hedgehog signaling. Development (Cambridge), 2013, 140, 1740-1750.	2.5	29
116	The Antiviral Response to Gamma Interferon. Journal of Virology, 2002, 76, 9060-9068.	3.4	28
117	Looking at neurodevelopment through a big data lens. Science, 2020, 369, .	12.6	28
118	Distinct Regulatory Mechanisms Act to Establish and Maintain Pax3 Expression in the Developing Neural Tube. PLoS Genetics, 2013, 9, e1003811.	3.5	27
119	Repressive interactions in gene regulatory networks: When you have no other choice. Current Topics in Developmental Biology, 2020, 139, 239-266.	2.2	25
120	Retinoid Acid Specifies Neuronal Identity through Graded Expression of Ascl1. Current Biology, 2013, 23, 412-418.	3.9	24
121	Memory functions reveal structural properties of gene regulatory networks. PLoS Computational Biology, 2018, 14, e1006003.	3.2	23
122	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. PLoS Biology, 2020, 18, e3000902.	5.6	21
123	Understanding Pattern Formation in Embryos: Experiment, Theory, and Simulation. Journal of Computational Biology, 2019, 26, 696-702.	1.6	20
124	Agonizing Hedgehog. Nature Chemical Biology, 2006, 2, 10-11.	8.0	19
125	Gene expression dysregulation domains are not a specific feature of Down syndrome. Nature Communications, 2019, 10, 2489.	12.8	19
126	Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development (Cambridge), 2019, 146, .	2.5	19

#	Article	IF	CITATIONS
127	Cross-species comparisons and <i>in vitro</i> models to study tempo in development and homeostasis. Interface Focus, 2021, 11, 20200069.	3.0	19
128	Dynamical landscapes of cell fate decisions. Interface Focus, 2022, 12, .	3.0	17
129	HomozygousFt embryos are affected in floor plate maintenance and ventral neural tube patterning. Developmental Dynamics, 2005, 233, 623-630.	1.8	16
130	The physics of development 100 years after D'Arcy Thompson's "On Growth and Form― Mechanisms of Development, 2017, 145, 26-31.	1.7	13
131	Smoothened Sensor Places Sodium and Sterols Center Stage. Developmental Cell, 2018, 44, 3-4.	7.0	10
132	Tractable nonlinear memory functions as a tool to capture and explain dynamical behaviors. Physical Review Research, 2020, 2, .	3.6	9
133	Hedgehog threads to spread. Nature Cell Biology, 2013, 15, 1265-1267.	10.3	8
134	The PAX-FOXO1s trigger fast trans-differentiation of chick embryonic neural cells into alveolar rhabdomyosarcoma with tissue invasive properties limited by S phase entry inhibition. PLoS Genetics, 2020, 16, e1009164.	3.5	8
135	Inclusion and diversity in developmental biology: introducing the Node Network. Development (Cambridge), 2020, 147, .	2.5	6
136	Applying an Adaptive Watershed to the Tissue Cell Quantification During T-Cell Migration and Embryonic Development. Methods in Molecular Biology, 2010, 616, 207-228.	0.9	6
137	Hedgehog Signaling: Measuring Ligand Concentrations with Receptor Ratios. Current Biology, 2004, 14, R889-R891.	3.9	4
138	Morphogens, modeling and patterning the neural tube: an interview with James Briscoe. BMC Biology, 2015, 13, 5.	3.8	4
139	In preprints: morphogens in motion. Development (Cambridge), 2022, 149, .	2.5	2
140	Limbs Made to Measure. PLoS Biology, 2010, 8, e1000421.	5.6	1
141	Thomas M. Jessell (1951-2019). Development (Cambridge), 2019, 146, .	2.5	1
142	How Development supports early career researchers. Development (Cambridge), 2021, 148, .	2.5	1
143	Thomas Michael Jessell. 2 August 1951—28 April 2019. Biographical Memoirs of Fellows of the Royal Society, 2022, 72, 197-219.	0.1	1
144	Floor Plate Patterning of Ventral Cell Types: Ventral Patterning. , 2009, , 233-242.		0

#	ARTICLE	IF	CITATIONS
145	[P1.23]: Repression of the proneural factor Ascl1 by retinoid signalling restricts neuronal fate choices in the ventral spinal cord. International Journal of Developmental Neuroscience, 2010, 28, 662-663.	1.6	Ο
146	[P2.79]: Dynamic patterning of the vertebrate neural tube. International Journal of Developmental Neuroscience, 2010, 28, 714-714.	1.6	0
147	Genetics of system biology. Current Opinion in Genetics and Development, 2012, 22, 523-526.	3.3	0
148	Mathematical models help explain experimental data. Response to â€~Transcriptional interpretation of Shh morphogen signaling: computational modeling validates empirically established models'. Development (Cambridge), 2016, 143, 1640-1643.	2.5	0
149	Please allow me to introduce myself. Development (Cambridge), 2018, 145, .	2.5	0
150	New Year PlanS. Development (Cambridge), 2019, 146, .	2.5	0
151	A focus on scope. Development (Cambridge), 2019, 146, .	2.5	0
152	Let there be preLights: one year on. Development (Cambridge), 2019, 146, .	2.5	0
153	An ode to the Node: 10 years in the life of a community blog. Development (Cambridge), 2020, 147, .	2.5	0
154	Zooming into 2021. Development (Cambridge), 2021, 148, .	2.5	0
155	Imaging development, stem cells and regeneration. Development (Cambridge), 2021, 148, .	2.5	0
156	Developing new associations. Development (Cambridge), 2020, 147, .	2.5	0
157	Another year of Developments. Development (Cambridge), 2022, 149, .	2.5	0
158	Preprints in Development. Development (Cambridge), 2022, 149, .	2.5	0
159	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
160	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
161	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
162	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0

#	Article	IF	CITATIONS
163	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
164	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
165	Title is missing!. , 2020, 16, e1009164.		0
166	Title is missing!. , 2020, 16, e1009164.		0
167	Title is missing!. , 2020, 16, e1009164.		0
168	Title is missing!. , 2020, 16, e1009164.		0
169	Title is missing!. , 2020, 16, e1009164.		0
170	Title is missing!. , 2020, 16, e1009164.		0