
Wenzhen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2883768/publications.pdf Version: 2024-02-01

WENZHENLI

#	Article	IF	CITATIONS
1	Next-Generation High-Performance Bio-Based Naphthalate Polymers Derived from Malic Acid for Sustainable Food Packaging. ACS Sustainable Chemistry and Engineering, 2022, 10, 2624-2633.	6.7	8
2	Bismuth Nanosheets Derived by In Situ Morphology Transformation of Bismuth Oxides for Selective Electrochemical CO ₂ Reduction to Formate. ACS Applied Materials & Interfaces, 2022, 14, 14210-14217.	8.0	24
3	Highly Efficient Electrochemical Synthesis of Hydrogen Peroxide (H ₂ O ₂) Enabled by Amino Acid Glycine-Derived Metal-Free Nitrogen-Doped Ordered Mesoporous Carbon. ACS Sustainable Chemistry and Engineering, 2022, 10, 5453-5462.	6.7	13
4	Exploring Electrochemical Flow-Cell Designs and Parameters for CO ₂ Reduction to Formate under Industrially Relevant Conditions. Journal of the Electrochemical Society, 2022, 169, 054511.	2.9	3
5	Paired electrolysis of 5-(hydroxymethyl)furfural in flow cells with a high-performance oxide-derived silver cathode. Green Chemistry, 2021, 23, 5056-5063.	9.0	41
6	Paired and Tandem Electrochemical Conversion of 5â€(Hydroxymethyl)furfural Using Membraneâ€Electrode Assemblyâ€Based Electrolytic Systems. ChemElectroChem, 2021, 8, 2817-2824.	3.4	24
7	Electrocatalytic Nitrate Reduction on Oxide-Derived Silver with Tunable Selectivity to Nitrite and Ammonia. ACS Catalysis, 2021, 11, 8431-8442.	11.2	125
8	Ultrafine Nickel Nanoparticles Encapsulated in N-Doped Carbon Promoting Hydrogen Oxidation Reaction in Alkaline Media. ACS Catalysis, 2021, 11, 7422-7428.	11.2	57
9	Electrocatalytic generation of hydrogen peroxide on cobalt nanoparticles embedded in nitrogen-doped carbon. Chinese Journal of Catalysis, 2021, 42, 2296-2305.	14.0	10
10	Recent advances in paired electrolysis of biomass-derived compounds towardÂcogeneration of value-added chemicals and fuels. Current Opinion in Electrochemistry, 2021, 30, 100795.	4.8	19
11	Electrocatalysts development for hydrogen oxidation reaction in alkaline media: From mechanism understanding to materials design. Chinese Journal of Catalysis, 2021, 42, 2094-2104.	14.0	15
12	Revealing nitrogen-containing species in commercial catalysts used for ammonia electrosynthesis. Nature Catalysis, 2020, 3, 1055-1061.	34.4	73
13	Comparison of Quinoneâ€Based Catholytes for Aqueous Redox Flow Batteries and Demonstration of Longâ€Term Stability with Tetrasubstituted Quinones. Advanced Energy Materials, 2020, 10, 2000340.	19.5	42
14	Lithium-mediated ammonia synthesis from water and nitrogen: a membrane-free approach enabled by an immiscible aqueous/organic hybrid electrolyte system. Green Chemistry, 2019, 21, 3839-3845.	9.0	30
15	Heterostructured Bismuth Vanadate/Cobalt Phosphate Photoelectrodes Promote TEMPOâ€Mediated Oxidation of 5â€Hydroxymethylfurfural. ChemElectroChem, 2019, 6, 3387-3392.	3.4	39
16	Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers. Green Chemistry, 2019, 21, 6210-6219.	9.0	116
17	Electrocatalytic oxidation of meso-erythritol in anion-exchange membrane alkaline fuel cell on PdAg/CNT catalyst. Journal of Power Sources, 2018, 375, 345-350.	7.8	13
18	Technoeconomic Analysis of a Hybrid Biomass Thermochemical and Electrochemical Conversion System. Energy Technology, 2018, 6, 178-187.	3.8	6

Wenzhen Li

#	Article	IF	CITATIONS
19	BCC-Phased PdCu Alloy as a Highly Active Electrocatalyst for Hydrogen Oxidation in Alkaline Electrolytes. Journal of the American Chemical Society, 2018, 140, 16580-16588.	13.7	149
20	Direct glycerol fuel cell with polytetrafluoroethylene (PTFE) thin film separator. Renewable Energy, 2017, 105, 647-655.	8.9	65
21	Investigation of the Interaction between Nafion Ionomer and Surface Functionalized Carbon Black Using Both Ultrasmall Angle X-ray Scattering and Cryo-TEM. ACS Applied Materials & Interfaces, 2017, 9, 6530-6538.	8.0	89
22	Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells. Applied Catalysis B: Environmental, 2017, 210, 121-130.	20.2	110
23	Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates. Journal of the American Chemical Society, 2017, 139, 14120-14128.	13.7	212
24	Co ₉ S ₈ activated N/S co-doped carbon tubes in situ grown on carbon nanofibers for efficient oxygen reduction. RSC Advances, 2017, 7, 34763-34769.	3.6	11
25	Direct fast pyrolysis bio-oil fuel cell. Fuel, 2016, 185, 85-93.	6.4	8
26	Three-Dimensional Phosphorus-Doped Graphitic-C ₃ N ₄ Self-Assembly with NH ₂ -Functionalized Carbon Composite Materials for Enhanced Oxygen Reduction Reaction. Langmuir, 2016, 32, 12569-12578.	3.5	66
27	PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol = methanol, ethanol, ethylene glycol and glycerol). Applied Catalysis B: Environmental, 2016, 199, 494-503.	20.2	154
28	N- and S-doped mesoporous carbon as metal-free cathode catalysts for direct biorenewable alcohol fuel cells. Journal of Materials Chemistry A, 2016, 4, 83-95.	10.3	101
29	Metalâ€Catalystâ€Free Carbohydrazide Fuel Cells with Threeâ€Dimensional Graphene Anodes. ChemSusChem, 2015, 8, 1147-1150.	6.8	27
30	Carbon nanotubes as catalysts for direct carbohydrazide fuel cells. Carbon, 2015, 89, 142-147.	10.3	19
31	Selective Oxidation of 1,2-Propanediol in Alkaline Anion-Exchange Membrane Electrocatalytic Flow Reactors: Experimental and DFT Investigations. ACS Catalysis, 2015, 5, 6926-6936.	11.2	29
32	Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration. Applied Catalysis B: Environmental, 2014, 154-155, 360-368.	20.2	101
33	Layer-controlled synthesis of graphene-like MoS2 from single source organometallic precursor for Li-ion batteries. RSC Advances, 2014, 4, 16716.	3.6	28
34	Hydrodeoxygenation of Dibenzofuran Over SBA-15 Supported Pt, Pd, and Ru Catalysts. Catalysis Letters, 2014, 144, 809-816.	2.6	39
35	Electrocatalytic Oxygen Evolution over Supported Small Amorphous Ni–Fe Nanoparticles in Alkaline Electrolyte. Langmuir, 2014, 30, 7893-7901.	3.5	234
36	Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. Green Chemistry, 2014, 16, 3778-3786.	9.0	217

Wenzhen Li

#	Article	IF	CITATIONS
37	Integrated electrocatalytic processing of levulinic acid and formic acid to produce biofuel intermediate valeric acid. Green Chemistry, 2014, 16, 1305-1315.	9.0	69
38	Selective electro-oxidation of glycerol to tartronate or mesoxalate on Au nanoparticle catalyst via electrode potential tuning in anion-exchange membrane electro-catalytic flow reactor. Applied Catalysis B: Environmental, 2014, 147, 871-878.	20.2	66
39	Surface dealloyed PtCo nanoparticles supported on carbon nanotube: facile synthesis and promising application for anion exchange membrane direct crude glycerol fuel cell. Green Chemistry, 2013, 15, 1133.	9.0	71
40	Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell. Frontiers in Chemistry, 2013, 1, 16.	3.6	37
41	Preparation, structure and catalytic properties of magnetically separable Cu–Fe catalysts for glycerol hydrogenolysis. Journal of Materials Chemistry, 2012, 22, 16598.	6.7	62
42	Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: Reaction pathway investigation in three-electrode cell and fuel cell reactors. Applied Catalysis B: Environmental, 2012, 125, 85-94.	20.2	119
43	Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst. Green Chemistry, 2012, 14, 2150.	9.0	61
44	Supported gold nanoparticles as anode catalyst for anion-exchange membrane-direct glycerol fuel cell (AEM-DGFC). International Journal of Hydrogen Energy, 2012, 37, 9393-9401.	7.1	100
45	Preparation and Characterization of PdFe Nanoleaves as Electrocatalysts for Oxygen Reduction Reaction. Chemistry of Materials, 2011, 23, 1570-1577.	6.7	106
46	Pd–Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. International Journal of Hydrogen Energy, 2011, 36, 12686-12697.	7.1	288
47	Electrocatalytic Reduction of CO ₂ to Small Organic Molecule Fuels on Metal Catalysts. ACS Symposium Series, 2010, , 55-76.	0.5	63
48	Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. Carbon, 2010, 48, 995-1003.	10.3	79
49	Nanostructured WCx/CNTs as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction. Energy and Environmental Science, 2010, 3, 1121.	30.8	106
50	Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochimica Acta, 2004, 49, 1045-1055.	5.2	297
51	Precisely Controlled Synthesis of Hybrid Intermetallic–Metal Nanoparticles for Nitrate Electroreduction. ACS Applied Materials & Interfaces, 0, , .	8.0	13