
In Hong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2883545/publications.pdf

Version: 2024-02-01

IN HONG YANG

#	Article	IF	CITATIONS
1	Therapeutic potential of neuromodulation for demyelinating diseases. Neural Regeneration Research, 2021, 16, 214.	1.6	2
2	Development of an Axon-Guiding Aligned Nanofiber-Integrated Compartmentalized Microfluidic Neuron Culture System. ACS Applied Bio Materials, 2021, 4, 8424-8432.	2.3	10
3	Modulation of Neural Activity for Myelination in the Central Nervous System. Frontiers in Neuroscience, 2019, 13, 952.	1.4	17
4	Fibro-Neuronal Guidance on Common, 3D-Printed Textured Substrates. IEEE Transactions on Nanobioscience, 2019, 18, 226-229.	2.2	10
5	Biofunctionalized platforms towards long-term neural interface. Current Opinion in Biomedical Engineering, 2018, 6, 81-91.	1.8	8
6	Electrospun nanofibers facilitate better alignment, differentiation, and long-term culture in an <i>in vitro</i> model of the neuromuscular junction (NMJ). Biomaterials Science, 2018, 6, 3262-3272.	2.6	40
7	Subcellular Optogenetic Stimulation Platform for Studying Activity-Dependent Axon Myelination In Vitro. Methods in Molecular Biology, 2018, 1791, 207-224.	0.4	5
8	Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and Schwann cell. Colloids and Surfaces B: Biointerfaces, 2018, 169, 356-365.	2.5	121
9	Neural interfaces engineered via micro- and nanostructured coatings. Nano Today, 2017, 14, 59-83.	6.2	60
10	PanIN Neuroendocrine Cells Promote Tumorigenesis via Neuronal Cross-talk. Cancer Research, 2017, 77, 1868-1879.	0.4	67
11	Static Magnetic Field Stimulation Enhances Oligodendrocyte Differentiation and Secretion of Neurotrophic Factors. Scientific Reports, 2017, 7, 6743.	1.6	57
12	Subcellular electrical stimulation of neurons enhances the myelination of axons by oligodendrocytes. PLoS ONE, 2017, 12, e0179642.	1.1	30
13	Identification of fluocinolone acetonide to prevent paclitaxelâ€induced peripheral neuropathy. Journal of the Peripheral Nervous System, 2016, 21, 128-133.	1.4	5
14	Subcellular Optogenetic Stimulation for Activity-Dependent Myelination of Axons in a Novel Microfluidic Compartmentalized Platform. ACS Chemical Neuroscience, 2016, 7, 1317-1324.	1.7	41
15	Compartmentalized microfluidic platform integrated with subcellular electrical stimulation for studying activity-dependent axon myelination. , 2016, , .		1
16	Novel RNA- and FMRP-binding protein TRF2-S regulates axonal mRNA transport and presynaptic plasticity. Nature Communications, 2015, 6, 8888.	5.8	34
17	Direct Transfer of Viral and Cellular Proteins from Varicella-Zoster Virus-Infected Non-Neuronal Cells to Human Axons. PLoS ONE, 2015, 10, e0126081.	1.1	15
18	An In Vitro Model of Latency and Reactivation of Varicella Zoster Virus in Human Stem Cell-Derived Neurons. PLoS Pathogens, 2015, 11, e1004885.	2.1	62

IN HONG YANG

#	Article	IF	CITATIONS
19	Neuromuscular junction in a microfluidic device. , 2013, 2013, 2833-5.		40
20	Neuronal activity promotes myelination via a cAMP pathway. Glia, 2013, 61, 843-854.	2.5	54
21	Retrograde axonal transport of VZV: kinetic studies in hESC-derived neurons. Journal of NeuroVirology, 2012, 18, 462-470.	1.0	34
22	Granzyme B-Induced Neurotoxicity Is Mediated via Activation of PAR-1 Receptor and Kv1.3 Channel. PLoS ONE, 2012, 7, e43950.	1.1	43
23	Axon Myelination and Electrical Stimulation in a Microfluidic, Compartmentalized Cell Culture Platform. NeuroMolecular Medicine, 2012, 14, 112-118.	1.8	51
24	Valve-based microfluidic compression platform: single axon injury and regrowth. Lab on A Chip, 2011, 11, 3888.	3.1	87
25	Efficient Generation of Schwann Cells from Human Embryonic Stem Cell-Derived Neurospheres. Stem Cell Reviews and Reports, 2011, 7, 394-403.	5.6	103
26	Controlling neurite outgrowth with patterned substrates. Journal of Biomedical Materials Research - Part A, 2011, 97A, 451-456.	2.1	10
27	Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5057-5062.	3.3	127
28	Varicella-Zoster Virus (VZV) Infection of Neurons Derived from Human Embryonic Stem Cells: Direct Demonstration of Axonal Infection, Transport of VZV, and Productive Neuronal Infection. Journal of Virology, 2011, 85, 6220-6233.	1.5	75
29	Can size alone explain some of the differences in toxicity between βâ€amyloid oligomers and fibrils?. Biotechnology and Bioengineering, 2010, 106, 333-337.	1.7	13
30	Circular compartmentalized microfluidic platform: Study of axon–glia interactions. Lab on A Chip, 2010, 10, 741.	3.1	79
31	Compartmentalized microfluidic culture platform to study mechanism of paclitaxel-induced axonal degeneration. Experimental Neurology, 2009, 218, 124-128.	2.0	111
32	Characterization of proteolytically digested Zebrafish chorion as extracellular matrix. , 2008, 2008, 1837-40.		4
33	Alteration of human neuroblastoma cell morphology and neurite extension with micropatterns. Biomaterials, 2005, 26, 6599-6609.	5.7	49
34	Spatially controlled co-culture of neurons and glial cells. Journal of Biomedical Materials Research - Part A, 2005, 75A, 976-984.	2.1	23
35	Automated On-Line Noninvasive Optical Glucose Monitoring in a Cell Culture System. Applied Spectroscopy, 2002, 56, 51-57.	1.2	22