Anita Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/288347/publications.pdf Version: 2024-02-01

ΔΝΙΤΑ SADKAD

#	Article	IF	CITATIONS
1	A V _H 1-69 antibody lineage from an infected Chinese donor potently neutralizes HIV-1 by targeting the V3 glycan supersite. Science Advances, 2020, 6, .	4.7	19
2	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	5.8	116
3	Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host and Microbe, 2019, 25, 873-883.e5.	5.1	42
4	Capturing the inherent structural dynamics of the HIV-1 envelope glycoprotein fusion peptide. Nature Communications, 2019, 10, 763.	5.8	30
5	HIV-1 vaccine design through minimizing envelope metastability. Science Advances, 2018, 4, eaau6769.	4.7	75
6	Structure of a cleavage-independent HIV Env recapitulates the glycoprotein architecture of the native cleaved trimer. Nature Communications, 2018, 9, 1956.	5.8	50
7	The human naive B cell repertoire contains distinct subclasses for a germline-targeting HIV-1 vaccine immunogen. Science Translational Medicine, 2018, 10, .	5.8	113
8	Glyco3D: A Suite of Interlinked Databases of 3D Structures of Complex Carbohydrates, Lectins, Antibodies, and Glycosyltransferases. , 2017, , 133-161.		3
9	T cells control the generation of nanomolar-affinity anti-glycan antibodies. Journal of Clinical Investigation, 2017, 127, 1491-1504.	3.9	63
10	Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design. PLoS Pathogens, 2017, 13, e1006212.	2.1	58
11	Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide Reductionist Vaccine Design. PLoS Pathogens, 2016, 12, e1005815.	2.1	104
12	Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies. Cell, 2016, 166, 1459-1470.e11.	13.5	230
13	A Prominent Site of Antibody Vulnerability on HIV Envelope Incorporates a Motif Associated with CCR5 Binding and Its Camouflaging Glycans. Immunity, 2016, 45, 31-45.	6.6	129
14	HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science, 2016, 351, 1458-1463.	6.0	382
15	Crystallographic Identification of Lipid as an Integral Component of the Epitope of HIV Broadly Neutralizing Antibody 4E10. Immunity, 2016, 44, 21-31.	6.6	87
16	Databases of Conformations and NMR Structures of Glycan Determinants. Glycobiology, 2015, 25, 1480-1490.	1.3	15
17	Glyco3D: A Portal for Structural Glycosciences. Methods in Molecular Biology, 2015, 1273, 241-258.	0.4	77
			_

18 Glycoinformatics and Glycosciences. , 2015, , 414-425.

ANITA SARKAR

#	Article	IF	CITATIONS
19	Conformational Preferences of the O-Antigen Polysaccharides of <i>Escherichia coli</i> O5ac and O5ab Using NMR Spectroscopy and Molecular Modeling. Biomacromolecules, 2013, 14, 2215-2224.	2.6	11
20	Deciphering the Glycan Preference of Bacterial Lectins by Glycan Array and Molecular Docking with Validation by Microcalorimetry and Crystallography. PLoS ONE, 2013, 8, e71149.	1.1	25
21	Protein Aggregation in Neurodegenerative Diseases: Insights from Computational Analyses. Current Bioinformatics, 2012, 7, 87-95.	0.7	6
22	PolySac3DB: an annotated data base of 3 dimensional structures of polysaccharides. BMC Bioinformatics, 2012, 13, 302.	1.2	32
23	The G protein-coupled receptors in the pufferfish Takifugu rubripes. BMC Bioinformatics, 2011, 12, S3.	1.2	37
24	Analysis and Prediction of DNA-Recognition by Zinc Finger Proteins. Advances in Bioinformatics and Biomedical Engineering Book Series, 2011, , 303-317.	0.2	0
25	ZiF-Predict: A Web Tool for Predicting DNA-Binding Specificity in C2H2 Zinc Finger Proteins. Genomics, Proteomics and Bioinformatics, 2010, 8, 122-126.	3.0	20
26	Controlling aggregation propensity in A53T mutant of alpha-synuclein causing Parkinson's disease. Biochemical and Biophysical Research Communications, 2009, 387, 305-309.	1.0	15