Gustavo Thalmer M Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2883383/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic/inorganic hybrid pigments from flavylium cations and palygorskite. Applied Clay Science, 2018, 162, 478-486.	2.6	38
2	Highly fluorescent hybrid pigments from anthocyanin- and red wine pyranoanthocyanin-analogs adsorbed on sepiolite clay. Photochemical and Photobiological Sciences, 2019, 18, 1750-1760.	1.6	21
3	Improved Synthesis of Analogues of Red Wine Pyranoanthocyanin Pigments. ACS Omega, 2018, 3, 954-960.	1.6	20
4	Ground―and Excited‧tate Acidity of Analogs of Red Wine Pyranoanthocyanins,. Photochemistry and Photobiology, 2018, 94, 1086-1091.	1.3	18
5	Hybrid Pigments from Anthocyanin Analogues and Synthetic Clay Minerals. ACS Omega, 2020, 5, 26592-26600.	1.6	18
6	The photophysics of photosensitization: A brief overview. Journal of Photochemistry and Photobiology, 2021, 7, 100042.	1.1	18
7	From vine to wine: photophysics of a pyranoflavylium analog of red wine pyranoanthocyanins. Pure and Applied Chemistry, 2017, 89, 1761-1767.	0.9	17
8	Triplet Excited States and Singlet Oxygen Production by Analogs of Red Wine Pyranoanthocyanins. Photochemistry and Photobiology, 2019, 95, 176-182.	1.3	16
9	The electronic transitions of analogs of red wine pyranoanthocyanin pigments. Photochemical and Photobiological Sciences, 2019, 18, 45-53.	1.6	16
10	Preparation and characterization of dispersions based on chitosan and poly(styrene sulfonate). Colloid and Polymer Science, 2017, 295, 1071-1078.	1.0	15
11	Dye-sensitized solar cells based on dimethylamino-Ï€-bridge-pyranoanthocyanin dyes. Solar Energy, 2020, 206, 188-199.	2.9	15
12	Interpolyelectrolyte complex formation: From lyophilic to lyophobic colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498, 112-120.	2.3	13
13	Formation and structure of chitosan–poly(sodium methacrylate) complex nanoparticles. Journal of Dispersion Science and Technology, 2018, 39, 83-91.	1.3	11
14	Chromophores inspired by the colors of fruit, flowers and wine. Pure and Applied Chemistry, 2020, 92, 255-263.	0.9	10
15	Anion binding to surfactant aggregates: AuCl4â^' in cationic, anionic and zwitterionic micelles. Journal of Molecular Liquids, 2020, 314, 113607.	2.3	9
16	A computational study of the ground and excited state acidities of synthetic analogs of red wine pyranoanthocyanins. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	9
17	Quantum Chemical Investigation of the Intramolecular Copigmentation Complex of an Acylated Anthocyanin. Journal of the Brazilian Chemical Society, 0, , .	0.6	7
18	Quantum chemical evidence for the origin of the red/blue colors of <i>Hydrangea macrophylla</i> sepals. New Journal of Chemistry, 2019, 43, 7532-7540.	1.4	7

#	Article	IF	CITATIONS
19	Fluorescence and Phosphorescence of Flavylium Cation Analogues of Anthocyanins. Photochem, 2022, 2, 423-434.	1.3	6
20	Ion–micelle interactions and the modeling of reactivity in micellar solutions of simple zwitterionic sulfobetaine surfactants. Current Opinion in Colloid and Interface Science, 2019, 44, 168-176.	3.4	5
21	Photophysics and Electrochemistry of Biomimetic Pyranoflavyliums: What Can Bioinspiration from Red Wines Offer. Photochem, 2022, 2, 9-31.	1.3	3
22	Charge transfer vs. proton transfer in the excited-state dynamics of biomimetic pyranoflavylium cations. Journal of Photochemistry and Photobiology, 2022, 10, 100110.	1.1	3
23	Quantum chemical investigation of the ground- and excited-state acidities of a dihydroxyfuranoflavylium cation. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	2
24	Ab initio calculation of the excited states of nitropyrenes. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	2