Longxiang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2883278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of covalently crosslinked attapulgite/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions. Journal of Industrial and Engineering Chemistry, 2015, 23, 188-193.	5.8	77
2	Novel approach for attapulgite/poly(acrylic acid) (ATP/PAA) nanocomposite microgels as selective adsorbent for Pb(II) Ion. Reactive and Functional Polymers, 2014, 74, 72-80.	4.1	57
3	Rapid Recovery Double Cross-Linking Hydrogel with Stable Mechanical Properties and High Resilience Triggered by Visible Light. ACS Applied Materials & Interfaces, 2017, 9, 13593-13601.	8.0	51
4	Attapulgite/Poly(acrylic acid) Nanocomposite (ATP/PAA) Hydrogels with Multifunctionalized Attapulgite (org-ATP) Nanorods as Unique Cross-linker: Preparation Optimization and Selective Adsorption of Pb(II) Ion. ACS Sustainable Chemistry and Engineering, 2014, 2, 643-651.	6.7	48
5	Novel Covalently Cross-Linked Attapulgite/Poly(acrylic acid- <i>co</i> -acrylamide) Hybrid Hydrogels by Inverse Suspension Polymerization: Synthesis Optimization and Evaluation as Adsorbents for Toxic Heavy Metals. Industrial & Engineering Chemistry Research, 2014, 53, 4277-4285.	3.7	48
6	A high modulus hydrogel obtained from hydrogen bond reconstruction and its application in vibration damper. RSC Advances, 2017, 7, 43755-43763.	3.6	46
7	Tannic acid-induced crosslinking of epoxidized soybean oil for toughening poly(lactic acid) via dynamic vulcanization. Polymer, 2018, 148, 109-118.	3.8	44
8	Highly temperature resistant cellulose nanofiber/polyvinyl alcohol hydrogel using aldehyde cellulose nanofiber as cross-linker. Cellulose, 2019, 26, 5291-5303.	4.9	41
9	Mechanical and thermal properties of rice Straw/PLA modified by nano Attapulgite/PLA interfacial layer. Composites Communications, 2019, 13, 18-21.	6.3	39
10	High Clay-Content Attapulgite/Poly(acrylic acid) Nanocomposite Hydrogel via Surface-Initiated Redox Radical Polymerization with Modified Attapulgite Nanorods as Initiator and Cross-Linker. Industrial & Engineering Chemistry Research, 2014, 53, 2067-2071.	3.7	38
11	Novel strategy for palygorskite/poly(acrylic acid) nanocomposite hydrogels from bi-functionalized palygorskite nanorods as easily separable adsorbent for cationic basic dye. Applied Clay Science, 2016, 121-122, 29-35.	5.2	27
12	Effects of length and organic modification of attapulgite nanorods on attapulgite/polystyrene nanocomposite via in-situ radical bulk polymerization. Applied Clay Science, 2016, 119, 87-95.	5.2	24
13	Poly(acrylic acid)/palygorskite microgel via radical polymerization in aqueous phase for reinforcing poly(vinyl alcohol) hydrogel. Applied Clay Science, 2020, 185, 105421.	5.2	18
14	Palygorskite/polystyrene nanocomposites via facile in-situ bulk polymerization: Gelation and thermal properties. Applied Clay Science, 2014, 100, 95-101.	5.2	15
15	Synthesis of Sodium Carboxymethyl Cellulose/Poly(acrylic acid) Microgels via Visible-Light-Triggered Polymerization as a Self-Sedimentary Cationic Basic Dye Adsorbent. Langmuir, 2022, 38, 3711-3719.	3.5	13
16	Design of a Rubbery Carboxymethyl Cellulose/Polyacrylic Acid Hydrogel via Visible-Light-Triggered Polymerization. Macromolecular Materials and Engineering, 2017, 302, 1600509.	3.6	12
17	Attapulgite/polylactide nanocomposites: Effect of polymer brush length. Materials Letters, 2014, 117, 214-216.	2.6	10
18	Highly-efficient isolation of cellulose microfiber from rice straw via gentle low-temperature phase transition. Cellulose, 2021, 28, 7021-7031.	4.9	8

#	Article	IF	CITATIONS
19	Possible Application of Tough Hydrogel in Machinery. Advances in Automobile Engineering, 2017, 06, .	0.2	0