Martin KopeckÃ¹/₂

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2882995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytologist, 2022, 233, 219-235.	3.5	32
2	Maintaining forest cover to enhance temperature buffering under future climate change. Science of the Total Environment, 2022, 810, 151338.	3.9	39
3	Can high-resolution topography and forest canopy structure substitute microclimate measurements? Bryophytes say no. Science of the Total Environment, 2022, 821, 153377.	3.9	15
4	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	4.2	113
5	Functional trait variation of <i>Anemone nemorosa</i> along macro―and microclimatic gradients close to the northern range edge. Nordic Journal of Botany, 2022, 2022, .	0.2	3
6	The use of photos to investigate ecological change. Journal of Ecology, 2022, 110, 1220-1236.	1.9	8
7	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	3.0	39
8	Historical charcoal burning and coppicing suppressed beech and increased forest vegetation heterogeneity. Journal of Vegetation Science, 2021, 32, .	1.1	13
9	Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Science of the Total Environment, 2021, 757, 143785.	3.9	106
10	Evaluating structural and compositional canopy characteristics to predict the lightâ€demand signature of the forest understorey in mixed, semiâ€natural temperate forests. Applied Vegetation Science, 2021, 24, .	0.9	24
11	Elevational range size patterns of vascular plants in the Himalaya contradict Rapoport's rule. Journal of Ecology, 2021, 109, 4025-4037.	1.9	7
12	Thermal differences between juveniles and adults increased over time in European forest trees. Journal of Ecology, 2021, 109, 3944-3957.	1.9	4
13	Temperature buffering in temperate forests: Comparing microclimate models based on ground measurements with active and passive remote sensing. Remote Sensing of Environment, 2021, 263, 112522.	4.6	21
14	Midpoint attractor models resolve the midâ€elevation peak in Himalayan plant species richness. Ecography, 2021, 44, 1665-1677.	2.1	4
15	Topographic Wetness Index as a Proxy for Soil Moisture: The Importance of Flowâ€Routing Algorithm and Grid Resolution. Water Resources Research, 2021, 57, e2021WR029871.	1.7	24
16	ForestTemp – Subâ€canopy microclimate temperatures of European forests. Global Change Biology, 2021, 27, 6307-6319.	4.2	57
17	Whole genome duplication increases ecological niche breadth of the perennial herb Urtica dioica. Preslia, 2021, 93, 305-319.	1.1	7
18	Drivers of aboveâ€ground understorey biomass and nutrient stocks in temperate deciduous forests. Journal of Ecology, 2020, 108, 982-997.	1.9	25

Martin KopeckÃ1/2

#	Article	IF	CITATIONS
19	Plant diversity in deciduous temperate forests reflects interplay among ancient and recent environmental stress. Journal of Vegetation Science, 2020, 31, 53-62.	1.1	7
20	Light availability and landâ€use history drive biodiversity and functional changes in forest herb layer communities. Journal of Ecology, 2020, 108, 1411-1425.	1.9	49
21	Plant functional trait response to environmental drivers across European temperate forest understorey communities. Plant Biology, 2020, 22, 410-424.	1.8	38
22	Light and warming drive forest understorey community development in different environments. Global Change Biology, 2020, 26, 1681-1696.	4.2	42
23	Increasing liana frequency in temperate European forest understories is driven by ivy. Frontiers in Ecology and the Environment, 2020, 18, 550-557.	1.9	13
24	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	6.0	1
25	Forest microclimate dynamics drive plant responses to warming. Science, 2020, 368, 772-775.	6.0	385
26	Light, temperature and understorey cover predominantly affect early life stages of tree seedlings in a multifactorial mesocosm experiment. Forest Ecology and Management, 2020, 461, 117907.	1.4	18
27	Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 2020, 4, 802-808.	3.4	67
28	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	4.2	122
29	The Taraxacum Flora of Ladakh, with notes on the adjacent regions of the West Himalaya . Phytotaxa, 2020, 457, 1-409.	0.1	9
30	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	6.0	3
31	A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications, 2019, 10, 5142.	5.8	232
32	Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. Agricultural and Forest Meteorology, 2019, 268, 40-47.	1.9	116
33	Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Global Ecology and Biogeography, 2019, 28, 1774-1786.	2.7	115
34	Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests. Landscape Ecology, 2019, 34, 2541-2556.	1.9	48
35	Interactive effects of past land use and recent forest management on the understorey community in temperate oak forests in South Sweden. Journal of Vegetation Science, 2019, 30, 917-928.	1.1	24
36	A general framework for quantifying the effects of land-use history on ecosystem dynamics. Ecological Indicators, 2019, 107, 105395.	2.6	5

Martin Kopecký

#	Article	IF	CITATIONS
37	Functionally distinct assembly of vascular plants colonizing alpine cushions suggests their vulnerability to climate change. Annals of Botany, 2019, 123, 569-578.	1.4	17
38	Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests. Forest Ecology and Management, 2019, 433, 405-418.	1.4	46
39	Sink limitation of plant growth determines tree line in the arid Himalayas. Functional Ecology, 2019, 33, 553-565.	1.7	27
40	Environmental drivers interactively affect individual tree growth across temperate European forests. Global Change Biology, 2019, 25, 201-217.	4.2	44
41	Context-Dependency of Agricultural Legacies in Temperate Forest Soils. Ecosystems, 2019, 22, 781-795.	1.6	25
42	Landscapeâ€scale vegetation homogenization in Central European subâ€montane forests over the past 50Âyears. Applied Vegetation Science, 2018, 21, 373-384.	0.9	22
43	Global environmental change effects on plant community composition trajectories depend upon management legacies. Global Change Biology, 2018, 24, 1722-1740.	4.2	93
44	Legacy of historical litter raking in temperate forest plant communities. Journal of Vegetation Science, 2018, 29, 596-606.	1.1	15
45	A multi-scale approach reveals random phylogenetic patterns at the edge of vascular plant life. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 22-30.	1.1	11
46	Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science, 2018, 29, 812-823.	1.1	51
47	Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes. Basic and Applied Ecology, 2018, 30, 52-64.	1.2	11
48	Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition. Environmental Pollution, 2018, 242, 1787-1799.	3.7	49
49	Niche asymmetry of vascular plants increases with elevation. Journal of Biogeography, 2017, 44, 1418-1425.	1.4	31
50	Interactions between soil phototrophs and vascular plants in Himalayan cold deserts. Soil Biology and Biochemistry, 2017, 115, 568-578.	4.2	16
51	Combining Biodiversity Resurveys across Regions to Advance Global Change Research. BioScience, 2017, 67, 73-83.	2.2	89
52	The paradox of longâ€ŧerm ungulate impact: increase of plant species richness in a temperate forest. Applied Vegetation Science, 2017, 20, 282-292.	0.9	24
53	Fungal root symbionts of high-altitude vascular plants in the Himalayas. Scientific Reports, 2017, 7, 6562.	1.6	53
54	Evaluating the robustness of three ring-width measurement methods for growth release reconstruction. Dendrochronologia, 2017, 46, 67-76.	1.0	16

Martin Kopecký

#	Article	IF	CITATIONS
55	Life and death of <i><scp>P</scp>icea abies</i> after barkâ€beetle outbreak: ecological processes driving seedling recruitment. Ecological Applications, 2017, 27, 156-167.	1.8	36
56	Resurveying historical vegetation data – opportunities and challenges. Applied Vegetation Science, 2017, 20, 164-171.	0.9	136
57	The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants. Microbial Ecology, 2016, 72, 394-406.	1.4	75
58	Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Scientific Reports, 2016, 6, 24881.	1.6	103
59	Gardening in the zone of death: an experimental assessment of the absolute elevation limit of vascular plants. Scientific Reports, 2016, 6, 24440.	1.6	26
60	Annual and intra-annual growth dynamics of Myricaria elegans shrubs in arid Himalaya. Trees - Structure and Function, 2016, 30, 761-773.	0.9	10
61	Measuring size and composition of species pools: a comparison of dark diversity estimates. Ecology and Evolution, 2016, 6, 4088-4101.	0.8	31
62	Global environmental change effects on ecosystems: the importance of landâ€use legacies. Global Change Biology, 2016, 22, 1361-1371.	4.2	148
63	Life stage, not climate change, explains observed tree range shifts. Global Change Biology, 2016, 22, 1904-1914.	4.2	46
64	Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology, 2015, 21, 3726-3737.	4.2	124
65	Vegetation resurvey is robust to plot location uncertainty. Diversity and Distributions, 2015, 21, 322-330.	1.9	80
66	Small changes in species composition despite stand-replacing bark beetle outbreak in <i>Picea abies</i> mountain forests. Canadian Journal of Forest Research, 2015, 45, 1164-1171.	0.8	21
67	Vascular plants at extreme elevations in eastern Ladakh, northwest Himalayas. Plant Ecology and Diversity, 2015, 8, 571-584.	1.0	35
68	Classification of <scp>K</scp> orean forests: patterns along geographic and environmental gradients. Applied Vegetation Science, 2015, 18, 5-22.	0.9	26
69	Forest fires within a temperate landscape: A decadal and millennial perspective from a sandstone region in Central Europe. Forest Ecology and Management, 2015, 336, 81-90.	1.4	56
70	Spatial patterns with memory: tree regeneration after standâ€replacing disturbance in <i><scp>P</scp>icea abies</i> mountain forests. Journal of Vegetation Science, 2014, 25, 1327-1340.	1.1	47
71	Experimental restoration of coppice-with-standards: Response of understorey vegetation from the conservation perspective. Forest Ecology and Management, 2013, 310, 234-241.	1.4	69
72	Nonâ€random extinctions dominate plant community changes in abandoned coppices. Journal of Applied Ecology, 2013, 50, 79-87.	1.9	121

Martin Kopecký

#	Article	IF	CITATIONS
73	Community structure of soil phototrophs along environmental gradients in arid <scp>H</scp> imalaya. Environmental Microbiology, 2013, 15, 2505-2516.	1.8	47
74	LONGWOOD: integrating woodland history and ecology in a geodatabase through an interdisciplinary approach. , 2013, 8795, .		1
75	Tree-Rings Mirror Management Legacy: Dramatic Response of Standard Oaks to Past Coppicing in Central Europe. PLoS ONE, 2013, 8, e55770.	1.1	63
76	Testing the Stress-Gradient Hypothesis at the Roof of the World: Effects of the Cushion Plant Thylacospermum caespitosum on Species Assemblages. PLoS ONE, 2013, 8, e53514.	1.1	63
77	Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environmental Research Letters, 2012, 7, 015504.	2.2	101
78	Plant Diversity Changes during the Postglacial in East Asia: Insights from Forest Refugia on Halla Volcano, Jeju Island. PLoS ONE, 2012, 7, e33065.	1.1	29
79	Half a century of succession in a temperate oakwood: from speciesâ€rich community to mesic forest. Diversity and Distributions, 2010, 16, 267-276.	1.9	185
80	Using topographic wetness index in vegetation ecology: does the algorithm matter?. Applied Vegetation Science, 2010, 13, 450-459.	0.9	139
81	Land use legacies in postâ€agricultural forests in the Doupovské Mountains, Czech Republic. Applied Vegetation Science, 2009, 12, 251-260.	0.9	49