Niccolo Bolli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2882800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signatures of mutational processes in human cancer. Nature, 2013, 500, 415-421.	13.7	8,060
2	Genomic Classification and Prognosis in Acute Myeloid Leukemia. New England Journal of Medicine, 2016, 374, 2209-2221.	13.9	3,067
3	Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nature Communications, 2014, 5, 2997.	5.8	741
4	Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science, 2014, 345, 1251343.	6.0	348
5	Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood, 2018, 132, 587-597.	0.6	335
6	Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. ELife, 2014, 3, .	2.8	318
7	A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia, 2019, 33, 159-170.	3.3	313
8	Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nature Genetics, 2020, 52, 306-319.	9.4	275
9	Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nature Genetics, 2014, 46, 487-491.	9.4	254
10	Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood, 2006, 107, 4514-4523.	0.6	238
11	Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nature Genetics, 2017, 49, 332-340.	9.4	229
12	Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity?. Blood, 2011, 117, 1109-1120.	0.6	210
13	Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia, 2009, 23, 1731-1743.	3.3	200
14	Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica, 2007, 92, 519-532.	1.7	183
15	Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nature Communications, 2019, 10, 3835.	5.8	183
16	Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood, 2006, 108, 1999-2005.	0.6	181
17	Genomic patterns of progression in smoldering multiple myeloma. Nature Communications, 2018, 9, 3363.	5.8	163
18	KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype. Leukemia, 2015, 29, 1177-1185.	3.3	156

#	Article	IF	CITATIONS
19	A practical guide for mutational signature analysis in hematological malignancies. Nature Communications, 2019, 10, 2969.	5.8	145
20	Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin. Leukemia, 2005, 19, 1760-1767.	3.3	139
21	Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia, 2018, 32, 2604-2616.	3.3	137
22	Cytoplasmic mutated nucleophosmin (NPM) defines the molecular status of a significant fraction of myeloid sarcomas. Leukemia, 2007, 21, 1566-1570.	3.3	127
23	Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. Journal of Clinical Oncology, 2021, 39, 1223-1233.	0.8	127
24	Hemopoietic-specific Sf3b1-K700E knock-in mice display the splicing defect seen in human MDS but develop anemia without ring sideroblasts. Leukemia, 2017, 31, 720-727.	3.3	105
25	Timing the initiation of multiple myeloma. Nature Communications, 2020, 11, 1917.	5.8	99
26	Born to Be Exported: COOH-Terminal Nuclear Export Signals of Different Strength Ensure Cytoplasmic Accumulation of Nucleophosmin Leukemic Mutants. Cancer Research, 2007, 67, 6230-6237.	0.4	96
27	Multiple myeloma clonal evolution in homogeneously treated patients. Leukemia, 2018, 32, 2636-2647.	3.3	94
28	Mutated nucleophosmin detects clonal multilineage involvement in acute myeloid leukemia: impact on WHO classification. Blood, 2006, 108, 4146-4155.	0.6	92
29	Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines. Leukemia, 2018, 32, 1043-1047.	3.3	87
30	Processed pseudogenes acquired somatically during cancer development. Nature Communications, 2014, 5, 3644.	5.8	86
31	Revealing the Impact of Structural Variants in Multiple Myeloma. Blood Cancer Discovery, 2020, 1, 258-273.	2.6	81
32	Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood, 2010, 115, 3329-3340.	0.6	70
33	Whole-genome sequencing reveals progressive versus stable myeloma precursor conditions as two distinct entities. Nature Communications, 2021, 12, 1861.	5.8	68
34	A dose-dependent tug of war involving the NPM1 leukaemic mutant, nucleophosmin, and ARF. Leukemia, 2009, 23, 501-509.	3.3	63
35	Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia, 2011, 25, 506-514.	3.3	62
36	A DNA target-enrichment approach to detect mutations, copy number changes and immunoglobulin translocations in multiple myeloma. Blood Cancer Journal, 2016, 6, e467-e467.	2.8	59

#	Article	IF	CITATIONS
37	Identification and functional characterization of a cytoplasmic nucleophosmin leukaemic mutant generated by a novel exon-11 NPM1 mutation. Leukemia, 2007, 21, 1099-1103.	3.3	57
38	Differential and limited expression of mutant alleles in multiple myeloma. Blood, 2014, 124, 3110-3117.	0.6	54
39	Integrative analysis of the genomic and transcriptomic landscape of double-refractory multiple myeloma. Blood Advances, 2020, 4, 830-844.	2.5	54
40	Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies. Blood, 2016, 128, e1-e9.	0.6	49
41	In human genome, generation of a nuclear export signal through duplication appears unique to nucleophosmin (NPM1) mutations and is restricted to AML. Leukemia, 2008, 22, 1285-1289.	3.3	46
42	Cytoplasmic mutated nucleophosmin is stable in primary leukemic cells and in a xenotransplant model of NPMc+ acute myeloid leukemia in SCID mice. Haematologica, 2008, 93, 775-779.	1.7	45
43	Aberrant subcellular expression of nucleophosmin and NPM-MLF1 fusion protein in acute myeloid leukaemia carrying t(3;5): A comparison with NPMc+ AML. Leukemia, 2006, 20, 368-371.	3.3	43
44	Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML. Blood, 2011, 118, 903-915.	0.6	43
45	Characterization of gene mutations and copy number changes in acute myeloid leukemia using a rapid target enrichment protocol. Haematologica, 2015, 100, 214-222.	1.7	43
46	Tumor protein D52 (TPD52): a novel B-cell/plasma-cell molecule with unique expression pattern and Ca2+-dependent association with annexin VI. Blood, 2005, 105, 2812-2820.	0.6	41
47	Moving From Cancer Burden to Cancer Genomics for Smoldering Myeloma. JAMA Oncology, 2020, 6, 425.	3.4	41
48	Comprehensive detection of recurring genomic abnormalities: a targeted sequencing approach for multiple myeloma. Blood Cancer Journal, 2019, 9, 101.	2.8	40
49	Clinical relevance of clonal hematopoiesis in persons aged ≥80 years. Blood, 2021, 138, 2093-2105.	0.6	37
50	Angioimmunoblastic T cell lymphoma: novel molecular insights by mutation profiling. Oncotarget, 2017, 8, 17763-17770.	0.8	37
51	Aberrant cytoplasmic expression of C-terminal-truncated NPM leukaemic mutant is dictated by tryptophans loss and a new NES motif. Leukemia, 2007, 21, 2052-2054.	3.3	36
52	Next-Generation Sequencing for Clinical Management of Multiple Myeloma: Ready for Prime Time?. Frontiers in Oncology, 2020, 10, 189.	1.3	33
53	Early Relapse Risk in Patients with Newly Diagnosed Multiple Myeloma Characterized by Next-generation Sequencing. Clinical Cancer Research, 2020, 26, 4832-4841.	3.2	33
54	Single- and double-hit events in genes encoding immune targets before and after T cell–engaging antibody therapy in MM. Blood Advances, 2021, 5, 3794-3798.	2.5	30

#	Article	IF	CITATIONS
55	cpsf1 is required for definitive HSC survival in zebrafish. Blood, 2011, 117, 3996-4007.	0.6	29
56	Detailed molecular characterisation of acute myeloid leukaemia with a normal karyotype using targeted DNA capture. Leukemia, 2013, 27, 1820-1825.	3.3	29
57	The human NPM1 mutation A perturbs megakaryopoiesis in a conditional mouse model. Blood, 2013, 121, 3447-3458.	0.6	29
58	Cytoplasmic nucleophosmin in myeloid sarcoma occurring 20 years after diagnosis of acute myeloid leukaemia. Lancet Oncology, The, 2006, 7, 350-352.	5.1	28
59	Copy number signatures predict chromothripsis and clinical outcomes in newly diagnosed multiple myeloma. Nature Communications, 2021, 12, 5172.	5.8	27
60	Cereblon enhancer methylation and IMiD resistance in multiple myeloma. Blood, 2021, 138, 1721-1726.	0.6	25
61	A western blot assay for detecting mutant nucleophosmin (NPM1) proteins in acute myeloid leukaemia. Leukemia, 2008, 22, 2285-2288.	3.3	24
62	A one-mutation mathematical model can explain the age incidence of acute myeloid leukemia with mutated nucleophosmin (NPM1). Haematologica, 2008, 93, 1219-1226.	1.7	23
63	Prognostic impact of genetic characterization in the GIMEMA LAM99P multicenter study for newly diagnosed acute myeloid leukemia. Haematologica, 2008, 93, 1017-1024.	1.7	22
64	2021 European Myeloma Network review and consensus statement on smoldering multiple myeloma: how to distinguish (and manage) Dr. Jekyll and Mr. Hyde. Haematologica, 2021, 106, 2799-2812.	1.7	22
65	Absence of nucleophosmin leukaemic mutants in B and T cells from AML with NPM1 mutations: implications for the cell of origin of NPMc+ AML. Leukemia, 2008, 22, 195-198.	3.3	21
66	mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies. Communications Biology, 2021, 4, 424.	2.0	21
67	<i>CDKN2A</i> deletion is a frequent event associated with poor outcome in patients with peripheral T-cell lymphoma not otherwise specified (PTCL-NOS). Haematologica, 2021, 106, 2918-2926.	1.7	18
68	Integration of transcriptional and mutational data simplifies the stratification of peripheral T ell lymphoma. American Journal of Hematology, 2019, 94, 628-634.	2.0	16
69	Limits and Applications of Genomic Analysis of Circulating Tumor DNA as a Liquid Biopsy in Asymptomatic Forms of Multiple Myeloma. HemaSphere, 2020, 4, e402.	1.2	15
70	Sustained ventricular tachycardia in a thalidomide-treated patient with primary plasma-cell leukemia. Nature Clinical Practice Oncology, 2007, 4, 722-725.	4.3	14
71	DIS3 mutations in multiple myeloma impact the transcriptional signature and clinical outcome. Haematologica, 2022, 107, 921-932.	1.7	14
72	Biology of peripheral T cell lymphomas – Not otherwise specified: Is something finally happening?. Pathogenesis, 2016, 3, 9-18.	0.8	12

#	Article	IF	CITATIONS
73	Nextâ€generation sequencing of a family with a high penetrance of monoclonal gammopathies for the identification of candidate risk alleles. Cancer, 2017, 123, 3701-3708.	2.0	12
74	Treating two concurrent B-cell and T-cell lymphoid neoplasms with alemtuzumab monotherapy. Lancet Oncology, The, 2004, 5, 64-65.	5.1	10
75	Specific targeting of the KRAS mutational landscape in myeloma as a tool to unveil the elicited antitumor activity. Blood, 2021, 138, 1705-1720.	0.6	10
76	A Journey Through Myeloma Evolution: From the Normal Plasma Cell to Disease Complexity. HemaSphere, 2020, 4, e502.	1.2	10
77	RNA-Seq De Novo Assembly of Clonal Immunoglobulin Rearrangements Identifies Interesting Biology and Uncovers Prognostic Features in Multiple Myeloma. Blood, 2016, 128, 195-195.	0.6	10
78	Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia, 2017, , .	3.3	9
79	Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma. Clinical Cancer Research, 2021, 27, 6479-6490.	3.2	9
80	The Molecular Pathogenesis of Multiple Myeloma. Hematology Reports, 2020, 12, 9054.	0.3	9
81	ROBO1 Promotes Homing, Dissemination, and Survival of Multiple Myeloma within the Bone Marrow Microenvironment. Blood Cancer Discovery, 2021, 2, 338-353.	2.6	8
82	Transcriptomic Analysis in Multiple Myeloma and Primary Plasma Cell Leukemia with t(11;14) Reveals Different Expression Patterns with Biological Implications in Venetoclax Sensitivity. Cancers, 2021, 13, 4898.	1.7	8
83	Recurrent histone mutations in Tâ€cell acute lymphoblastic leukaemia. British Journal of Haematology, 2019, 184, 676-679.	1.2	7
84	Application of Next-Generation Sequencing for the Genomic Characterization of Patients with Smoldering Myeloma. Cancers, 2020, 12, 1332.	1.7	7
85	What Is New in the Treatment of Smoldering Multiple Myeloma?. Journal of Clinical Medicine, 2021, 10, 421.	1.0	7
86	Clinical, Morphological and Clonal Progression of VEXAS Syndrome in the Context of Myelodysplasia Treated with Azacytidine. Clinical Hematology International, 2022, 4, 52-55.	0.7	7
87	The Route of the Malignant Plasma Cell in Its Survival Niche: Exploring "Multiple Myelomas― Cancers, 2022, 14, 3271.	1.7	5
88	High-dose chemotherapy followed by autologous transplantation may overcome the poor prognosis of diffuse large B-cell lymphoma patients with MYC/BCL2 co-expression. Blood Cancer Journal, 2016, 6, e491-e491.	2.8	4
89	Sf3b1 K700E Mutation Impairs Pre-mRNA Splicing and Definitive Hematopoiesis in a Conditional Knock-in Mouse Model. Blood, 2015, 126, 140-140.	0.6	4
90	Analysis of Mutational Signatures Suggest That Aid Has an Early and Driver Role in Multiple Myeloma. Blood, 2016, 128, 116-116.	0.6	4

#	Article	IF	CITATIONS
91	Timing the Initiation of Multiple Myeloma. SSRN Electronic Journal, 0, , .	0.4	4
92	â€~Reply to Pitiot et al.'. Leukemia, 2007, 21, 2055-2056.	3.3	3
93	Rapid parallel acquisition of somatic mutations after <i><scp>NPM</scp>1</i> in acute myeloid leukaemia evolution. British Journal of Haematology, 2017, 176, 825-829.	1.2	3
94	CD40 Activity on Mesenchymal Cells Negatively Regulates OX40L to Maintain Bone Marrow Immune Homeostasis Under Stress Conditions. Frontiers in Immunology, 2021, 12, 662048.	2.2	3
95	Pathogenetic and Prognostic Implications of Increased Mitochondrial Content in Multiple Myeloma. Cancers, 2021, 13, 3189.	1.7	3
96	The 2020 BMT CTN Myeloma Intergroup Workshop on Immune Profiling and Minimal Residual Disease Testing in Multiple Myeloma. Transplantation and Cellular Therapy, 2021, 27, 807-816.	0.6	3
97	MGUS and clonal hematopoiesis show unrelated clinical and biological trajectories in an older population cohort. Blood Advances, 2022, 6, 5702-5706.	2.5	3
98	Genomics of Smoldering Multiple Myeloma: Time for Clinical Translation of Findings?. Cancers, 2021, 13, 3319.	1.7	2
99	Specific Targeting of KRAS Using a Novel High-Affinity KRAS Antisense Oligonucleotide in Multiple Myeloma. Blood, 2019, 134, 3104-3104.	0.6	2
100	Whole-Genome Sequencing Reveals Evidence of Two Biologically and Clinically Distinct Entities: Progressive <i>Versus</i> Stable Myeloma Precursor Disease. Blood, 2020, 136, 47-48.	0.6	2
101	A Next Generation Sequencing-Based Approach to Detect Gene Mutations, Copy Number Changes and IGH Translocations in Multiple Myeloma. Blood, 2014, 124, 3364-3364.	0.6	2
102	Dissecting Genetic and Phenotypic Heterogeneity to Map Molecular Phylogenies and Deliver Personalized Outcome and Treatment Predictions in AML. Blood, 2015, 126, 803-803.	0.6	2
103	Redefining Mutational Profiling Using RNA-Seq: Insight into the Functional Mutational Landscape of Multiple Myeloma. Blood, 2015, 126, 837-837.	0.6	2
104	Peripheral T-Cell Lymphomas Not Otherwise Specified: Potential Novel Molecular Entities Based on Both Tumor and Microenvironment Cellular Components. Blood, 2016, 128, 4098-4098.	0.6	2
105	A rare case of atypical chronic lymphocytic leukaemia presenting as nephrotic syndrome. BMJ Case Reports, 2017, 2017, bcr-2016-218850.	0.2	2
106	Clinical Relevance of Clonal Hematopoiesis in the Oldest-Old Population: Analysis of the "Health and Anemia" Study. Blood, 2018, 132, 750-750.	0.6	2
107	Reply to â€~Aberrant cytoplasmic expression of C-terminal truncated NPM leukaemic mutant is dictated by tryptophans loss and a new NES motif' by Falini et al Leukemia, 2007, 21, 2054-2054.	3.3	1
108	Next Generation Sequencing in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, e2-e3.	0.2	1

#	Article	IF	CITATIONS
109	Bowel perforation from occult ileal involvement after diagnosis in a case of primary mediastinal large B-cell lymphoma. BMJ Case Reports, 2016, 2016, bcr2016216317.	0.2	1
110	The Genomic and Transcriptomic Landscape of Double-Refractory Multiple Myeloma. Blood, 2019, 134, 3056-3056.	0.6	1
111	Genomic Landscape and Its Prognostic Implications in Multiple Myeloma Using a Targeted Sequencing Approach. Blood, 2015, 126, 370-370.	0.6	1
112	GATA-3 Expression in Peripheral T-Cell Lymphomas (PTCL): Identification of a Cut-Off and Prognostic Value in PTCL-NOS Versus Others Hystotypes. Blood, 2015, 126, 3889-3889.	0.6	1
113	Personally Tailored Risk Prediction of AML Based on Comprehensive Genomic and Clinical Data. Blood, 2015, 126, 85-85.	0.6	1
114	Whole Genome Sequencing of Unique Paired SMM/MGUS Progressing to MM Samples Reveals a Genomic Landscape with Diverse Evolutionary Pattern. Blood, 2016, 128, 2088-2088.	0.6	1
115	Chemotherapy-Related Mutational Signatures Reveal the Origins of Therapy-Related Myeloid Neoplasms. Blood, 2021, 138, 3271-3271.	0.6	1
116	MGUS and Chip: Two Faces, but Not of the Same Medal. Blood, 2021, 138, 3800-3800.	0.6	1
117	OAB-041: Epithelial-mesenchymal-transition regulated by Junctional Adhesion Molecule-A (JAM-A) associates with aggressive extramedullary multiple myeloma disease. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S26-S27.	0.2	1
118	Analysis of the genomic and transcriptomic landscape of chemoresistant multiple myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e58-e59.	0.2	0
119	PS1345 CIRCULATING TUMOR DNA AS A LIQUID BIOPSY IN SMOLDERING MULTIPLE MYELOMA TO IDENTIFY BIOMARKERS OF PROGRESSION. HemaSphere, 2019, 3, 614-615.	1.2	0
120	A new case of myelodysplastic syndrome associated with t(3;3)(q21;q26) and inv(11)(p15q22). Tumori, 2020, 106, NP18-NP22.	0.6	0
121	Tumor Protein D52 (TPD52): A Novel B Cell/Plasma Cell Molecule Identified through a Proteomic Approach and Characterized by Unique Expression Pattern and Ca2+-Dependent Association with Annexin VI Blood, 2004, 104, 3652-3652.	0.6	0
122	Exon-12 Nucleophosmin (NPM) Mutation and Aberrant Cytoplasmic Expression of NPM Protein in Leukemia Cell Line OCI-AML3 Blood, 2005, 106, 2376-2376.	0.6	0
123	Prognostic Impact of Genetic Characterization in the GIMEMA LAM99P Study for Newly Diagnosed Adult AML. Relevance of Combined Analysis of Conventional Karyotyping, FLT3 and NPM Mutational Status Blood, 2005, 106, 226-226.	0.6	0
124	Mechanism of Altered Nucleo-Cytoplasmic Traffic of Nucleophosmin in Acute Myelogenous Leukemia Carrying Exon-12 NPM Mutations (NPMc+ AML) Blood, 2005, 106, 4396-4396.	0.6	0
125	Reciprocal Interaction between NPM Leukemic Mutants and Arf: Structural Basis and Functional Consequences Blood, 2006, 108, 1939-1939.	0.6	0
126	Function of Nucleophosmin in Zebrafish Hematopoiesis Blood, 2007, 110, 2644-2644.	0.6	0

#	Article	IF	CITATIONS
127	The Role of RNA Helicase Dead Box 18 in Zebrafish Hematopoiesis and Human MDS. Blood, 2008, 112, 500-500.	0.6	0
128	Cleavage and Polyadenylation Specificity Factor 1 Is Required for Definitive Hematopoietic Stem Cell Survival In Zebrafish Blood, 2010, 116, 1606-1606.	0.6	0
129	Upregulation of eIF4E in Nucleophosmin 1 (NPM1) Haploinsufficient Cells Alters CCAAT Enhancer Binding Protein Alpha (C/EBPα) Activity: Implications for MDS and AML. Blood, 2011, 118, 2432-2432.	0.6	0
130	Whole Exome Sequencing Of Multiple Myeloma Reveals An Heterogeneous Clonal Architecture and Genomic Evolution. Blood, 2013, 122, 399-399.	0.6	0
131	Differential and Limited Expression of Mutant Alleles in Multiple Myeloma. Blood, 2014, 124, 2007-2007.	0.6	0
132	The Complex Landscape of Rearrangements in Smoldering and Symptomatic Multiple Myeloma Revealed By Whole-Genome Sequencing. Blood, 2016, 128, 236-236.	0.6	0
133	The Landscape of Structural Variant Signatures in Multiple Myeloma Identifies Distinct Disease Subgroups with Implications for Pathogenesis. Blood, 2018, 132, 109-109.	0.6	0
134	Mytype: A Capture Based Sequencing Approach to Detect Somatic Mutations, Copy Number Changes and IGH Translocations in Multiple Myeloma. Blood, 2018, 132, 5588-5588.	0.6	0
135	Whole Genome Sequencing Reveals Recurrent Structural Driver Events in Peripheral T-Cell Lymphomas Not Otherwise Specified. Blood, 2018, 132, 4115-4115.	0.6	0
136	Lack of Significant Differences in Somatic Alterations between MGUS, SMM and Symptomatic Multiple Myeloma: A Result from Comprehensive Genomic Profiling Study. Blood, 2019, 134, 3089-3089.	0.6	0
137	Timing the Initiation of Multiple Myeloma. Blood, 2019, 134, 573-573.	0.6	0
138	Dissection of Bone Marrow Microenvironment By Single Cell RNA Sequencing in Warm AIHA Patients: A Proof-of-Concept Analysis. Blood, 2021, 138, 931-931.	0.6	0
139	Revealing Transcriptome Deregulation upon Genomic Complexity in Multiple Myeloma. Blood, 2020, 136, 3-4.	0.6	0
140	P-058: The dynamics of nucleotide variants in the progression from myeloma precursor conditions to multiple myeloma using targeted sequencing of serial bone marrow samples. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S70.	0.2	0
141	The Dynamics of Nucleotide Variants in the Progression from Low–Intermediate Myeloma Precursor Conditions to Multiple Myeloma: Studying Serial Samples with a Targeted Sequencing Approach. Cancers, 2022, 14, 1035	1.7	0