
Vincent J M N L Felde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2882660/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wet sieving versus dry crushing: Soil microaggregates reveal different physical structure, bacterial diversity and organic matter composition in a clay gradient. European Journal of Soil Science, 2021, 72, 810-828.	1.8	31
2	Editorial: Ecological Development and Functioning of Biological Soil Crusts After Natural and Human Disturbances. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
3	Disentangling the effects of OM quality and soil texture on microbially mediated structure formation in artificial model soils. Geoderma, 2021, 403, 115213.	2.3	31
4	Water repellency decreases with increasing carbonate content and pH for different biocrust types on sand dunes. Journal of Hydrology and Hydromechanics, 2021, 69, 369-377.	0.7	6
5	Lichens Bite the Dust – A Bioweathering Scenario in the Atacama Desert. IScience, 2020, 23, 101647.	1.9	15
6	Comment on â€~Kidron, G. J. (2018). Biocrust research: A critical view on eight common hydrologicalâ€related paradigms and dubious theses. <i>Ecohydrology</i> , e2061'. Ecohydrology, 2020, 13, e2215.	1.1	1
7	Microhydrological Niches in Soils: How Mucilage and EPS Alter the Biophysical Properties of the Rhizosphere and Other Biological Hotspots. Vadose Zone Journal, 2019, 18, 1-10.	1.3	73
8	Determining Millimeterâ€Scale Maps of Cation Exchange Capacity at Macropore Surfaces in Bt Horizons. Vadose Zone Journal, 2019, 18, 1-11.	1.3	8
9	Development of the polysaccharidic matrix in biocrusts induced by a cyanobacterium inoculated in sand microcosms. Biology and Fertility of Soils, 2018, 54, 27-40.	2.3	72
10	What stabilizes biological soil crusts in the Negev Desert?. Plant and Soil, 2018, 429, 9-18.	1.8	19
11	Ongoing oversanding induces biological soil crust layering – A new approach for biological soil crust structure elucidation determined from high resolution penetration resistance data. Geoderma, 2018, 313, 250-264.	2.3	14
12	In Situ X-Ray Tomography Imaging of Soil Water and Cyanobacteria From Biological Soil Crusts Undergoing Desiccation. Frontiers in Environmental Science, 2018, 6, .	1.5	16
13	Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrology, 2018, 11, e1991.	1.1	37
14	The potential of the cyanobacterium Leptolyngbya ohadii as inoculum for stabilizing bare sandy substrates. Soil Biology and Biochemistry, 2018, 127, 318-328.	4.2	61
15	Cyanobacterial populations in biological soil crusts of the northwest Negev Desert, Israel – effects of local conditions and disturbance. FEMS Microbiology Ecology, 2017, 93, fiw228.	1.3	13
16	Pore characteristics in biological soil crusts are independent of extracellular polymeric substances. Soil Biology and Biochemistry, 2016, 103, 294-299.	4.2	21
17	Biological soil crusts cause subcritical water repellency in a sand dune ecosystem located along a rainfall gradient in the NW Negev desert, Israel. Journal of Hydrology and Hydromechanics, 2016, 64, 133-140.	0.7	35
18	Microstructure and Weathering Processes Within Biological Soil Crusts. Ecological Studies, 2016, , 237-255.	0.4	19

VINCENT J M N L FELDE

#	Article	IF	CITATIONS
19	Composition and Macrostructure of Biological Soil Crusts. Ecological Studies, 2016, , 159-172.	0.4	22
20	Threeâ€dimensional structure and cyanobacterial activity within a desert biological soil crust. Environmental Microbiology, 2016, 18, 372-383.	1.8	48
21	Cyanobacterial Diversity in Biological Soil Crusts along a Precipitation Gradient, Northwest Negev Desert, Israel. Microbial Ecology, 2015, 70, 219-230.	1.4	62
22	Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodiversity and Conservation, 2014, 23, 1687-1708.	1.2	78