
Andras Simon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2882642/publications.pdf Version: 2024-02-01

ANDRAS SIMON

#	Article	lF	CITATIONS
1	Tig1 regulates proximo-distal identity during salamander limb regeneration. Nature Communications, 2022, 13, 1141.	5.8	7
2	Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders. Nature Cell Biology, 2022, 24, 645-658.	4.6	12
3	CUBIC-f: An optimized clearing method for cell tracing and evaluation of neurite density in the salamander brain. Journal of Neuroscience Methods, 2021, 348, 109002.	1.3	8
4	Standardized gene and genetic nomenclature for the newt Pleurodeles waltl. Developmental Dynamics, 2021, , .	0.8	4
5	Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges. Cellular and Molecular Life Sciences, 2021, 78, 6033-6049.	2.4	13
6	Locomotion dependent neuron-glia interactions control neurogenesis and regeneration in the adult zebrafish spinal cord. Nature Communications, 2021, 12, 4857.	5.8	22
7	Walking with Salamanders: From Molecules to Biorobotics. Trends in Neurosciences, 2020, 43, 916-930.	4.2	54
8	Secondary ossification center induces and protects growth plate structure. ELife, 2020, 9, .	2.8	29
9	Model systems for regeneration: salamanders. Development (Cambridge), 2019, 146, .	1.2	110
10	Cellular basis of brain maturation and acquisition of complex behaviors in salamanders. Development (Cambridge), 2018, 145, .	1.2	23
11	Homeostatic and regenerative neurogenesis in salamanders. Progress in Neurobiology, 2018, 170, 81-98.	2.8	44
12	Reprint of: A chemical screen identifies trifluoperazine as an inhibitor of glioblastoma growth. Biochemical and Biophysical Research Communications, 2018, 499, 136-142.	1.0	5
13	Dr. Panagiotis (Takis) Tsonis: A man for all seasons. Developmental Biology, 2018, 433, 115-117.	0.9	1
14	A quantitative analysis of 3D-cell distribution in regenerative muscle-skeletal system with synchrotron X-ray computed microtomography. Scientific Reports, 2018, 8, 14145.	1.6	7
15	Changing master regulator without reprogramming. Experimental Cell Research, 2018, 370, 189.	1.2	0
16	Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration. Developmental Cell, 2017, 40, 608-617.e6.	3.1	33
17	A chemical screen identifies trifluoperazine as an inhibitor of glioblastoma growth. Biochemical and Biophysical Research Communications, 2017, 494, 477-483.	1.0	22
18	Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nature Communications, 2017, 8, 2286.	5.8	123

ANDRAS SIMON

#	Article	IF	CITATIONS
19	Skeletal muscle dedifferentiation during salamander limb regeneration. Current Opinion in Genetics and Development, 2016, 40, 108-112.	1.5	24
20	MARCKS-like protein is an initiating molecule in axolotl appendage regeneration. Nature, 2016, 531, 237-240.	13.7	83
21	Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors. Scientific Reports, 2016, 6, 26448.	1.6	29
22	Sublethal Caspase Activation Promotes Generation of Cardiomyocytes from Embryonic Stem Cells. PLoS ONE, 2015, 10, e0120176.	1.1	19
23	Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nature Communications, 2015, 6, 7916.	5.8	41
24	Isolation and Culture of Neurospheres from the Adult Newt Brain. Methods in Molecular Biology, 2015, 1290, 197-204.	0.4	4
25	Husbandry of Spanish Ribbed Newts (Pleurodeles waltl). Methods in Molecular Biology, 2015, 1290, 47-70.	0.4	29
26	Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain. ELife, 2015, 4, .	2.8	53
27	Progenitor Cell Dynamics in the Newt Telencephalon during Homeostasis and Neuronal Regeneration. Stem Cell Reports, 2014, 2, 507-519.	2.3	45
28	Fundamental Differences in Dedifferentiation and Stem Cell Recruitment during Skeletal Muscle Regeneration in Two Salamander Species. Cell Stem Cell, 2014, 14, 174-187.	5.2	271
29	Limb regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 291-300.	5.9	94
30	On with their heads. Nature, 2013, 500, 32-33.	13.7	4
31	A reference transcriptome and inferred proteome for the salamander Notophthalmus viridescens. Experimental Cell Research, 2013, 319, 1187-1197.	1.2	49
32	Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development (Cambridge), 2013, 140, 2548-2561.	1.2	198
33	Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development (Cambridge), 2011, 138, 180-180.	1.2	2
34	Microglia activation during neuroregeneration in the adult vertebrate brain. Neuroscience Letters, 2011, 497, 11-16.	1.0	22
35	Dopamine Controls Neurogenesis in the Adult Salamander Midbrain in Homeostasis and during Regeneration of Dopamine Neurons. Cell Stem Cell, 2011, 8, 426-433.	5.2	76
36	Myogenic skeletal muscle satellite cells communicate by tunnelling nanotubes. Journal of Cellular Physiology, 2010, 223, 376-383.	2.0	21

ANDRAS SIMON

#	Article	IF	CITATIONS
37	Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development (Cambridge), 2010, 137, 4127-4134.	1.2	90
38	Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. FASEB Journal, 2010, 24, 750-756.	0.2	51
39	Not lost in translation. Seminars in Cell and Developmental Biology, 2009, 20, 691-696.	2.3	16
40	Molecular and Cellular Basis of Regeneration and Tissue Repair. Cellular and Molecular Life Sciences, 2008, 65, 3-7.	2.4	15
41	Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model. Development (Cambridge), 2007, 134, 2881-2887.	1.2	99
42	Plasticity of Mammalian Myotubes Upon Stimulation with a Thrombin-activated Serum Factor. Cell Cycle, 2007, 6, 1096-1101.	1.3	20
43	From Stem Cell to Progenitor and Back Again. Cell, 2007, 128, 825-826.	13.5	15
44	Targeted gene delivery to differentiated skeletal muscle: A tool to study dedifferentiation. Developmental Dynamics, 2007, 236, 481-488.	0.8	7
45	Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. Journal of Cell Biology, 2006, 172, 433-440.	2.3	231
46	A critical role for thrombin in vertebrate lens regeneration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 765-776.	1.8	40
47	Thrombin Activation of S-Phase Reentry by Cultured Pigmented Epithelial Cells of Adult Newt Iris. Experimental Cell Research, 2002, 281, 101-106.	1.2	24
48	Thrombin Activation of S-Phase Reentry by Cultured Pigmented Epithelial Cells of Adult Newt Iris. Experimental Cell Research, 2002, 281, 101-101.	1.2	1
49	Mammalian postmitotic nuclei reenter the cell cycle after serum stimulation in newt/mouse hybrid myotubes. Current Biology, 2001, 11, 855-858.	1.8	63
50	[22] Analyzing membrane topology of 11-cis-retinol dehydrogenase. Methods in Enzymology, 2000, 316, 344-358.	0.4	4
51	Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. Nature Genetics, 1999, 22, 188-191.	9.4	255
52	Primary Structure of Human 11-cisRetinol Dehydrogenase and Organization and Chromosomal Localization of the Corresponding Gene. Genomics, 1996, 36, 424-430.	1.3	67
53	The Retinal Pigment Epithelial-specific 11-cis Retinol Dehydrogenase Belongs to the Family of Short Chain Alcohol Dehydrogenases. Journal of Biological Chemistry, 1995, 270, 1107-1112.	1.6	229