Chengjie Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/288261/publications.pdf

Version: 2024-02-01

		331670	395702
61	1,219	21	33
papers	citations	h-index	g-index
65	65	65	1354
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Systematic optimization of the substituents on the phenothiazine donor of doubly strapped porphyrin sensitizers: an efficiency over 11% unassisted by any cosensitizer or coadsorbent. Journal of Materials Chemistry A, 2019, 7, 20854-20860.	10.3	68
2	A novel p -aminophenylthio- and cyano- substituted BODIPY as a fluorescence turn-on probe for distinguishing cysteine and homocysteine from glutathione. Dyes and Pigments, 2018, 148, 212-218.	3.7	57
3	A novel nitroethylene-based porphyrin as a NIR fluorescence turn-on probe for biothiols based on the Michael addition reaction. Dyes and Pigments, 2018, 148, 437-443.	3.7	43
4	Regioselectively Halogenated Expanded Porphyrinoids as Building Blocks for Constructing Porphyrinae Forphyrinoid Heterodyads with Tunable Energy Transfer. Journal of the American Chemical Society, 2019, 141, 5294-5302.	13.7	38
5	Efficient dye-sensitized solar cells based on concerted companion dyes: Systematic optimization of thiophene units in the organic dye components. Chinese Chemical Letters, 2022, 33, 4313-4316.	9.0	38
6	Synthetic porphyrin chemistry in China. Science China Chemistry, 2018, 61, 511-514.	8.2	37
7	Stereo―and Regioselective Phyllobilane Oxidation in Leaf Homogenates of the Peace Lily (<i>>Spathiphyllum wallisii)</i> : Hypothetical Endogenous Path to Yellow Chlorophyll Catabolites. Chemistry - A European Journal, 2015, 21, 136-149.	3.3	36
8	Selective Photocatalysis Approach for Introducing ArS Units into BODIPYs through Thiyl Radicals. Organic Letters, 2019, 21, 733-736.	4.6	36
9	Light-Absorbing Pyridine Derivative as a New Electrolyte Additive for Developing Efficient Porphyrin Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 57017-57024.	8.0	35
10	Dual-target recognition sandwich assay based on core-shell magnetic mesoporous silica nanoparticles for sensitive detection of breast cancer cells. Talanta, 2018, 182, 306-313.	5.5	34
11	Blue transition metal complexes of a natural bilin-type chlorophyll catabolite. Chemical Science, 2014, 5, 3388-3395.	7.4	33
12	Nâ€Confused Phlorinâ€Prodigiosin Chimera: <i>meso</i> àê€Aryl Oxidation and Ï€â€Extension Triggered by Peripheral Coordination. Angewandte Chemie - International Edition, 2020, 59, 1537-1541.	13.8	32
13	Solar cells sensitized by porphyrin dyes containing a substituted carbazole donor with synergistically extended absorption and suppressed the dye aggregation. Chinese Chemical Letters, 2020, 31, 1927-1930.	9.0	31
14	Porphyrins containing a tetraphenylethylene-substituted phenothiazine donor for fabricating efficient dye sensitized solar cells with high photovoltages. Journal of Materials Chemistry A, 2022, 10, 1320-1328.	10.3	31
15	Transition metal complexes of phyllobilins – a new realm of bioinorganic chemistry. Dalton Transactions, 2015, 44, 10116-10127.	3.3	30
16	Efficient Dye-Sensitized Solar Cells Based on a New Class of Doubly Concerted Companion Dyes. ACS Applied Materials & Doubly Concerted Companion Dyes. ACS Applied Materials & Double Concerted Concer	8.0	28
17	Efficient solar cells based on cosensitizing porphyrin dyes containing a wrapped donor, a wrapped π-framework and a substituted benzothiadiazole unit. Science China Chemistry, 2019, 62, 994-1000.	8.2	27
18	Skeletal Rearrangement of Twisted Thiaâ€Norhexaphyrin: Multiply Annulated Polypyrrolic Aromatic Macrocycles. Angewandte Chemie - International Edition, 2019, 58, 5925-5929.	13.8	26

#	Article	IF	CITATIONS
19	Chlorophyllâ€Derived Yellow Phyllobilins of Higher Plants as Mediumâ€Responsive Chiral Photoswitches. Angewandte Chemie - International Edition, 2016, 55, 15760-15765.	13.8	24
20	A key point of porphyrin structure affect DSSCs performance based on porphyrin sensitizers. Dyes and Pigments, 2014, 100, 278-285.	3.7	23
21	Expanded N-Confused Phlorin: A Platform for a Multiply Fused Polycyclic Ring System via Oxidation within the Macrocycle. Journal of the American Chemical Society, 2020, 142, 17195-17205.	13.7	23
22	Neo-N-confused Phlorins and Phlorinone: Rational Synthesis and Tunable Properties. Organic Letters, 2017, 19, 650-653.	4.6	22
23	Twisted-Planar-Twisted expanded porphyrinoid dimer as a rudimentary reaction-based methanol indicator. Nature Communications, 2020, 11, 5289.	12.8	20
24	Tripyrrin-armed isosmaragdyrins: synthesis, heterodinuclear coordination, and protonation-triggered helical inversion. Chemical Science, 2020, 11, 2790-2795.	7.4	19
25	Fluorenyl Indoline as an Efficient Electron Donor for Concerted Companion Dyes: Enhanced Light-Harvesting and Photocurrent. ACS Applied Materials & Interfaces, 2021, 13, 49828-49839.	8.0	18
26	Novel Types of Hypermodified Fluorescent Phyllobilins from Breakdown of Chlorophyll in Senescent Leaves of Grapevine (<i>Vitis vinifera</i>). Chemistry - A European Journal, 2018, 24, 17268-17279.	3.3	15
27	Performance of four artificial chlorin-type sensitizers with different stereostructures in dye-sensitized solar cells. Dyes and Pigments, 2013, 98, 181-189.	3.7	13
28	Corroles programmed for regioselective cycloaddition chemistry $\hat{a} \in \text{``}$ synthesis of a bisadduct with C60-fullerene. Journal of Porphyrins and Phthalocyanines, 2012, 16, 556-563.	0.8	12
29	A New Route to Indazolone via Amidation Reaction of o-Carboxyazobenzene. Organic Letters, 2012, 14, 479-481.	4.6	12
30	Yellow Dioxobilinâ€Type Tetrapyrroles from Chlorophyll Breakdown in Higher Plantsâ€"A New Class of Colored Phyllobilins. Chemistry - A European Journal, 2019, 25, 4052-4057.	3.3	12
31	Regioselective Oxidative Ring Cleavage of a Phlorin Analogue: AnÂApproach for Synthesizing Linear Tetrapyrroles. Organic Letters, 2018, 20, 1941-1944.	4.6	11
32	Pyroâ€Phyllobilins: Elusive Chlorophyll Catabolites Lacking a Critical Carboxylate Function of the Natural Chlorophylls. Chemistry - A European Journal, 2018, 24, 2987-2998.	3.3	11
33	Synthesis of corrole–fullerene dyads via [4 + 2] cycloaddition reaction. RSC Advances, 2014, 4, 40758-40762.	3.6	9
34	Zn-complex of a natural yellow chlorophyll catabolite. Journal of Porphyrins and Phthalocyanines, 2016, 20, 388-396.	0.8	9
35	N-Confused Hexapyrrolic Phlorinoid with NIR Absorption: Synthesis, Fusion, Oxidation, and Copper(II) Coordination. Organic Letters, 2020, 22, 9648-9652.	4.6	9
36	A pink colored dioxobilin-type phyllobilin from breakdown of chlorophyll. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2019, 150, 813-820.	1.8	8

#	Article	IF	Citations
37	The synthesis of porphyrin–anthraquinone dyad via an azo-rearrangement. Chinese Chemical Letters, 2011, 22, 539-542.	9.0	6
38	A new type of multibenzyloxy-wrapped porphyrin sensitizers for developing efficient dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2020, 24, 401-409.	0.8	6
39	Computational study of aromaticity, 1H NMR spectra and intermolecular interactions of twisted thia-norhexaphyrin and its multiply annulated polypyrrolic derivatives. Physical Chemistry Chemical Physics, 2019, 21, 25334-25343.	2.8	5
40	A Blue Zinc Complex of a Dioxobilinâ€Type Pink Chlorophyll Catabolite Exhibiting Bright Chelationâ€Enhanced Red Fluorescence. European Journal of Inorganic Chemistry, 2021, 2021, 1904-1912.	2.0	5
41	Stable thiophene-embedded N-confused homoporphyrins: Partial conjugation, fusion and fluoride binding. Dyes and Pigments, 2021, 194, 109612.	3.7	5
42	Solvent-regulated biomorphs from the intense π,π-mediated assemblies of tetracenequinone fused porphyrin. CrystEngComm, 2021, 23, 7565-7569.	2.6	5
43	Efficient Solar Cells Sensitized by Organic Concerted Companion Dyes Suitable for Indoor Lamps. ChemSusChem, 2022, 15, .	6.8	5
44	Von Chlorophyll abstammende gelbe Phyllobiline h $\tilde{A}\P$ herer Pflanzen als umgebungsgesteuerte, chirale Photoschalter. Angewandte Chemie, 2016, 128, 15992-15997.	2.0	4
45	Skeletal Rearrangement of Twisted Thiaâ€Norhexaphyrin: Multiply Annulated Polypyrrolic Aromatic Macrocycles. Angewandte Chemie, 2019, 131, 5986-5990.	2.0	4
46	Functionalization of BODIPY with enamines and amines through one-step reactions with ethylamines. Dyes and Pigments, 2020, 180, 108504.	3.7	4
47	Rational Synthesis of 5,5,5â€Tricyclic Fused Thiaâ€heptaphyrin (1.1.1.1.1.0) From a Helical Oligopyrrin Hybrid. Chemistry - an Asian Journal, 2020, 15, 1285-1289.	3.3	4
48	Synthesis, spectroscopic and crystallographic analysis of the Zn-complex of a di(β,β′-sulfoleno)pyrrin: model for Zn-complexes of bilirubin and of phylloxanthobilins. Monatshefte FÃ⅓r Chemie, 2016, 147, 1031-1036.	1.8	3
49	A Dipyrrin Programmed for Covalent Loading with Fullerenes. Chemistry - A European Journal, 2018, 24, 10032-10037.	3.3	3
50	Confusion Approach Modulated Syntheses of Corrorin Parasitized Hexaphyrins(1.1.1.1.0) and the Oxidative Ring Cleavage Behavior. Organic Letters, 2021, 23, 8307-8311.	4.6	3
51	Loading Phlorins with Fullerenes by a [4 + 2]-Cycloaddition Reaction: Regulation of the Regioselectivity by Pyrrole Linkage Modes. Journal of Organic Chemistry, 2022, 87, 2758-2766.	3.2	3
52	Nâ€Confused Phlorinâ€Prodigiosin Chimera: meso â€Aryl Oxidation and Ï€â€Extension Triggered by Peripheral Coordination. Angewandte Chemie, 2020, 132, 1553-1557.	2.0	2
53	Novel anthracene-based organic dyes as co-sensitizers of porphyrins for developing efficient dye-sensitized solar cells. New Journal of Chemistry, 0, , .	2.8	2
54	Facile retro-Dieckmann cleavage of a pink phyllobilin: new type of potential downstream steps of natural chlorophyll breakdown. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 0, , 1.	1.8	2

CHENGJIE LI

#	Article	IF	Citations
55	Porphyrindiene-Based Tandem Diels–Alder Reaction for Preparing Low-Symmetry π-Extended Porphyrins with Push–Pull Skeletons. Journal of Organic Chemistry, 0, , .	3.2	2
56	Chain Length Modulated Dimerization and Cyclization of Terminal Thienyl-Blocked Oligopyrranes. Organic Letters, 2022, 24, 5428-5432.	4.6	2
57	Synthesis of a doubly SO2-fused phlorin: Tuning the structure and properties by the SO2 groups. Journal of Porphyrins and Phthalocyanines, 2018, 22, 799-806.	0.8	1
58	Syntheses of thiophene appended N-confused phlorin isomers. Journal of Porphyrins and Phthalocyanines, 0, , A-G.	0.8	1
59	Synthesis of meso-coumarin-substituted porphyrins., 2011,,.		0
60	Innentitelbild: Von Chlorophyll abstammende gelbe Phyllobiline h \tilde{A} ¶herer Pflanzen als umgebungsgesteuerte, chirale Photoschalter (Angew. Chem. 51/2016). Angewandte Chemie, 2016, 128, 15912-15912.	2.0	0
61	æ–°åž‹å¼,åŸå•‰çš"设è®jã€å•̂æˆä¸Žæ€§èƒ½ç"ç©¶. Scientia Sinica Chimica, 2022, , .	0.4	0