Peter Batary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2882391/publications.pdf

Version: 2024-02-01

38742 28297 12,079 136 50 105 citations g-index h-index papers 140 140 140 10189 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Restoring biodiversity needs more than reducing pesticides. Trends in Ecology and Evolution, 2022, 37, 115-116.	8.7	7
2	Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance – A meta-analysis. Agriculture, Ecosystems and Environment, 2022, 326, 107822.	5.3	32
3	Landscape structure is a major driver of plant and arthropod diversity in natural European forest fragments. Ecosphere, 2022, 13, e3905.	2.2	7
4	Fragmentation of forest-steppe predicts functional community composition of wild bee and wasp communities. Global Ecology and Conservation, 2022, 33, e01988.	2.1	7
5	Matrix quality and habitat type drive the diversity pattern of forest steppe fragments. Perspectives in Ecology and Conservation, 2022, 20, 60-68.	1.9	2
6	Field experiments underestimate aboveground biomass response to drought. Nature Ecology and Evolution, 2022, 6, 540-545.	7.8	30
7	Prioritise the most effective measures for biodiversity-friendly agriculture. Trends in Ecology and Evolution, 2022, , .	8.7	2
8	Grassland type and presence of management shape butterfly functional diversity in agricultural and forested landscapes. Global Ecology and Conservation, 2022, 35, e02096.	2.1	4
9	Scent, rather than fur pattern, determines predation of mice: an inâ€theâ€wild experiment with plasticine mouse models. Journal of Zoology, 2022, 316, 223-228.	1.7	3
10	Urbanization hampers biological control of insect pests: A global meta-analysis. Science of the Total Environment, 2022, 834, 155396.	8.0	15
11	Scale-dependent effectiveness of on-field vs. off-field agri-environmental measures for wild bees. Basic and Applied Ecology, 2022, 62, 55-60.	2.7	5
12	Not only hedgerows, but also flower fields can enhance bat activity in intensively used agricultural landscapes. Basic and Applied Ecology, 2022, 63, 23-35.	2.7	3
13	Biodiversity and yield tradeâ€offs for organic farming. Ecology Letters, 2022, 25, 1699-1710.	6.4	25
14	Spatiotemporal land-use diversification for biodiversity. Trends in Ecology and Evolution, 2022, , .	8.7	2
15	No place for ground-dwellers in cities: A meta-analysis on bird functional traits. Global Ecology and Conservation, 2022, 38, e02217.	2.1	5
16	Combination of organic farming and flower strips in agricultural landscapes – A feasible method to maximise functional diversity of plant traits related to pollination. Global Ecology and Conservation, 2022, 38, e02229.	2.1	4
17	Historical, local and landscape factors determine the success of grassland restoration for arthropods. Agriculture, Ecosystems and Environment, 2021, 308, 107271.	5.3	8
18	Combining land-sparing and land-sharing in European landscapes. Advances in Ecological Research, 2021, , 251-303.	2.7	39

#	Article	IF	CITATIONS
19	Larger pollinators deposit more pollen on stigmas across multiple plant species—A metaâ€analysis. Journal of Applied Ecology, 2021, 58, 699-707.	4.0	51
20	Large carabids enhance weed seed removal in organic fields and in large-scale, but not small-scale agriculture. Landscape Ecology, 2021, 36, 427-438.	4.2	4
21	Urbanization does not affect green space bird species richness in a mid-sized city. Urban Ecosystems, 2021, 24, 789-800.	2.4	8
22	Smaller and Isolated Grassland Fragments Are Exposed to Stronger Seed and Insect Predation in Habitat Edges. Forests, 2021, 12, 54.	2.1	9
23	Organic winter cereals benefit bumblebee colonies in agricultural landscapes with massâ€flowering crops. Insect Conservation and Diversity, 2021, 14, 504-514.	3.0	3
24	Flowering fields, organic farming and edge habitats promote diversity of plants and arthropods on arable land. Journal of Applied Ecology, 2021, 58, 1155-1166.	4.0	13
25	Urbanization shapes bird communities and nest survival, but not their food quantity. Global Ecology and Conservation, 2021, 26, e01475.	2.1	7
26	Effects of three flower field types on bumblebees and their pollen diets. Basic and Applied Ecology, 2021, 52, 95-108.	2.7	16
27	Environmentally-friendly and organic management practices enable complementary diversification of plant–bumblebee food webs. Basic and Applied Ecology, 2021, 53, 164-174.	2.7	6
28	Organic farming supports lower pest infestation, but fewer natural enemies than flower strips. Journal of Applied Ecology, 2021, 58, 2277-2286.	4.0	8
29	Fragment connectivity shapes bird communities through functional trait filtering in two types of grasslands. Global Ecology and Conservation, 2021, 28, e01687.	2.1	9
30	Beyond organic farming $\hat{a} \in \text{``harnessing biodiversity-friendly landscapes. Trends in Ecology and Evolution, 2021, 36, 919-930.}$	8.7	219
31	Increasing connectivity enhances habitat specialists but simplifies plant–insect food webs. Oecologia, 2021, 195, 539-546.	2.0	9
32	Irreproducibility in searches of scientific literature: A comparative analysis. Ecology and Evolution, 2021, 11, 14658-14668.	1.9	12
33	Conservation biology research priorities for 2050: A Central-Eastern European perspective. Biological Conservation, 2021, 264, 109396.	4.1	8
34	High land-use intensity in grasslands constrains wild bee species richness in Europe. Biological Conservation, 2020, 241, 108255.	4.1	35
35	Arthropod functional traits shaped by landscape-scale field size, local agri-environment schemes and edge effects. Basic and Applied Ecology, 2020, 48, 102-111.	2.7	25
36	The Unmeasured ecological effect of mosquito control. European Journal of Ecology, 2020, 6, 71-76.	0.3	1

#	Article	IF	CITATIONS
37	Biologia Futura: landscape perspectives on farmland biodiversity conservation. Biologia Futura, 2020, 71, 9-18.	1.4	65
38	Wealth, water and wildlife: Landscape aridity intensifies the urban luxury effect. Global Ecology and Biogeography, 2020, 29, 1595-1605.	5.8	32
39	Configurational crop heterogeneity increases withinâ€field plant diversity. Journal of Applied Ecology, 2020, 57, 654-663.	4.0	47
40	Agriâ€environment schemes enhance pollinator richness and abundance but bumblebee reproduction depends on field size. Journal of Applied Ecology, 2020, 57, 1818-1828.	4.0	39
41	Landscape configuration, organic management, and withinâ€field position drive functional diversity of spiders and carabids. Journal of Applied Ecology, 2019, 56, 63-72.	4.0	77
42	Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16442-16447.	7.1	312
43	Transferring biodiversity-ecosystem function research to the management of â€~real-world' ecosystems. Advances in Ecological Research, 2019, 61, 323-356.	2.7	51
44	Effectiveness of agriâ€environmental management on pollinators is moderated more by ecological contrast than by landscape structure or landâ€use intensity. Ecology Letters, 2019, 22, 1493-1500.	6.4	47
45	Vulnerability of Ecosystem Services in Farmland Depends on Landscape Management. , 2019, , 91-96.		5
46	Autonomous sound recording outperforms human observation for sampling birds: a systematic map and user guide. Ecological Applications, 2019, 29, e01954.	3.8	101
47	Carabid functional diversity is enhanced by conventional flowering fields, organic winter cereals and edge habitats. Agriculture, Ecosystems and Environment, 2019, 284, 106579.	5.3	26
48	Connectedness of habitat fragments boosts conservation benefits for butterflies, but only in landscapes with little cropland. Landscape Ecology, 2019, 34, 1045-1056.	4.2	13
49	Insect and plant traits drive local and landscape effects on herbivory in grassland fragments. Ecosphere, 2019, 10, e02717.	2.2	9
50	Landâ \in sharing/â \in sparing connectivity landscapes for ecosystem services and biodiversity conservation. People and Nature, 2019, 1, 262-272.	3.7	152
51	Agricultural intensification at local and landscape scales impairs farmland birds, but not skylarks (Alauda arvensis). Agriculture, Ecosystems and Environment, 2019, 277, 21-24.	5.3	13
52	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
53	Trait-based paradise - about the importance of real functionality. Community Ecology, 2019, 20, 314-316.	0.9	15
54	High critical forest habitat thresholds of native bird communities in Afrotropical agroforestry landscapes. Biological Conservation, 2019, 230, 20-28.	4.1	26

#	Article	IF	CITATIONS
55	Maizeâ€dominated landscapes reduce bumblebee colony growth through pollen diversity loss. Journal of Applied Ecology, 2019, 56, 294-304.	4.0	38
56	Crop rotation and agriâ€environment schemes determine bumblebee communities via flower resources. Journal of Applied Ecology, 2018, 55, 1714-1724.	4.0	34
57	Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172242.	2.6	153
58	Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A metaâ€analysis. Journal of Applied Ecology, 2018, 55, 2484-2495.	4.0	165
59	Nonâ€linearities in bird responses across urbanization gradients: A metaâ€analysis. Global Change Biology, 2018, 24, 1046-1054.	9.5	90
60	Ecosystem services and disservices provided by small rodents in arable fields: Effects of local and landscape management. Journal of Applied Ecology, 2018, 55, 548-558.	4.0	39
61	Small-scale agricultural landscapes and organic management support wild bee communities of cereal field boundaries. Agriculture, Ecosystems and Environment, 2018, 254, 92-98.	5.3	40
62	Comparing the sampling performance of sound recorders versus point counts in bird surveys: A metaâ€analysis. Journal of Applied Ecology, 2018, 55, 2575-2586.	4.0	85
63	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
64	Responses of insect herbivores and herbivory to habitat fragmentation: a hierarchical metaâ€analysis. Ecology Letters, 2017, 20, 264-272.	6.4	105
65	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	9.5	259
66	Landscapeâ€scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. Journal of Applied Ecology, 2017, 54, 1804-1813.	4.0	82
67	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1	1 0.78431 1.9	4 rgBT /Ove 186
68	Grassland management in agricultural vs. forested landscapes drives butterfly and bird diversity. Biological Conservation, 2017, 216, 51-59.	4.1	37
69	The former Iron Curtain still drives biodiversity–profit trade-offs in German agriculture. Nature Ecology and Evolution, 2017, 1, 1279-1284.	7.8	114
70	How Agricultural Intensification Affects Biodiversity and Ecosystem Services. Advances in Ecological Research, 2016, 55, 43-97.	2.7	234
71	When natural habitat fails to enhance biological pest control $\hat{a} \in \text{``Five hypotheses. Biological}$ Conservation, 2016, 204, 449-458.	4.1	388
72	Spillover of arthropods from cropland to protected calcareous grassland $\hat{a} \in \text{``the neighbouring habitat matters. Agriculture, Ecosystems and Environment, 2016, 235, 127-133.}$	5. 3	45

#	Article	IF	CITATIONS
73	Forest specialist and generalist small mammals in forest edges and hedges. Wildlife Biology, 2016, 22, 86-94.	1.4	25
74	The role of agriâ€environment schemes in conservation and environmental management. Conservation Biology, 2015, 29, 1006-1016.	4.7	687
75	Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia, 2015, 179, 209-222.	2.0	79
76	Insectivorous and open-cup nester bird species suffer the most from urbanization. Bird Study, 2015, 62, 78-86.	1.0	17
77	Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Diversity and Distributions, 2015, 21, 1204-1217.	4.1	82
78	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	12.8	656
79	Harnessing the biodiversity value of Central and Eastern European farmland. Diversity and Distributions, 2015, 21, 722-730.	4.1	172
80	Both local and landscape factors determine plant and Orthoptera diversity in the semi-natural grasslands of Transylvania, Romania. Biodiversity and Conservation, 2015, 24, 229-245.	2.6	18
81	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	1.9	178
82	How do edge effect and tree species diversity change bird diversity and avian nest survival in Germany's largest deciduous forest?. Forest Ecology and Management, 2014, 319, 44-50.	3.2	72
83	Landscape configuration of crops and hedgerows drives local syrphid fly abundance. Journal of Applied Ecology, 2014, 51, 505-513.	4.0	90
84	Functional beetle diversity in managed grasslands: effects of region, landscape context and land use intensity. Landscape Ecology, 2014, 29, 529-540.	4.2	24
85	Environmentally friendly management as an intermediate strategy between organic and conventional agriculture to support biodiversity. Biological Conservation, 2014, 178, 146-154.	4.1	38
86	Density of insectâ€pollinated grassland plants decreases with increasing surrounding landâ€use intensity. Ecology Letters, 2014, 17, 1168-1177.	6.4	87
87	Effects of timing and frequency of mowing on the threatened scarce large blue butterfly – A fine-scale experiment. Agriculture, Ecosystems and Environment, 2014, 196, 24-33.	5.3	27
88	Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141358.	2.6	232
89	Management of reedbeds: mosaic reed cutting does not affect prey abundance and nest predation rate of reed passerine birds. Wetlands Ecology and Management, 2014, 22, 227-234.	1.5	14
90	Potential metapopulation structure and the effects of habitat quality on population size of the endangered False Ringlet butterfly. Journal of Insect Conservation, 2013, 17, 537-547.	1.4	22

#	Article	IF	Citations
91	Effect of crop management and landscape context on insect pest populations and crop damage. Agriculture, Ecosystems and Environment, 2013, 166, 118-125.	5.3	75
92	The impact of hedge-forest connectivity and microhabitat conditions on spider and carabid beetle assemblages in agricultural landscapes. Journal of Insect Conservation, 2013, 17, 1027-1038.	1.4	33
93	Effects of grazing and biogeographic regions on grassland biodiversity in Hungary – analysing assemblages of 1200 species. Agriculture, Ecosystems and Environment, 2013, 166, 28-34.	5.3	63
94	Landscape composition, connectivity and fragment size drive effects of grassland fragmentation on insect communities. Journal of Applied Ecology, 2013, 50, 387-394.	4.0	118
95	Contrasting effects of massâ€flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecological Applications, 2013, 23, 1938-1946.	3.8	100
96	Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields. PLoS ONE, 2013, 8, e54818.	2.5	30
97	Contrasting effect of isolation of hedges from forests on farmland vs. woodland birds. Community Ecology, 2012, 13, 155-161.	0.9	26
98	Landscape-moderated bird nest predation in hedges and forest edges. Acta Oecologica, 2012, 45, 50-56.	1.1	32
99	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	10.4	1,443
100	Coating plasticine eggs can eliminate the overestimation of predation on artificial ground nests. Bird Study, 2012, 59, 350-352.	1.0	16
101	Responses of plant, insect and spider biodiversity to local and landscape scale management intensity in cereal crops and grasslands. Agriculture, Ecosystems and Environment, 2012, 146, 130-136.	5.3	138
102	Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary. Insect Conservation and Diversity, 2012, 5, 57-66.	3.0	56
103	Interactive effects of landscape context constrain the effectiveness of local agriâ€environmental management. Journal of Applied Ecology, 2012, 49, 695-705.	4.0	100
104	Different habitat selection by two sympatric <i>Maculinea</i> butterflies at small spatial scale. Insect Conservation and Diversity, 2012, 5, 118-126.	3.0	18
105	Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1894-1902.	2.6	460
106	Does habitat heterogeneity increase farmland biodiversity?. Frontiers in Ecology and the Environment, 2011, 9, 152-153.	4.0	47
107	Effects of fertilizer application on summer usage of cereal fields by farmland birds in central Hungary. Bird Study, 2011, 58, 330-337.	1.0	2
108	Conservation: Limits of Land Sparing. Science, 2011, 334, 593-593.	12.6	105

#	Article	IF	Citations
109	Local and landscape effects on bee communities of Hungarian winter cereal fields. Agricultural and Forest Entomology, 2011, 13, 59-66.	1.3	44
110	Spatial heterogeneity and farmland birds: different perspectives in Western and Eastern Europe. Ibis, 2011, 153, 875-876.	1.9	56
111	Interaction of local and landscape features in the conservation of Hungarian arable weed diversity. Applied Vegetation Science, 2011, 14, 40-48.	1.9	32
112	Set-aside management: How do succession, sowing patterns and landscape context affect biodiversity?. Agriculture, Ecosystems and Environment, 2011, 143, 37-44.	5.3	105
113	Mixed effects of landscape structure and farming practice on bird diversity. Agriculture, Ecosystems and Environment, 2011, 141, 119-125.	5.3	64
114	Set-aside promotes insect and plant diversity in a Central European country. Agriculture, Ecosystems and Environment, 2011, 141, 296-301.	5.3	42
115	The past and future of farmland birds in Hungary. Bird Study, 2011, 58, 365-377.	1.0	37
116	Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agriculture, Ecosystems and Environment, 2010, 136, 35-39.	5.3	122
117	Landscape-moderated importance of hedges in conserving farmland bird diversity of organic vs. conventional croplands and grasslands. Biological Conservation, 2010, 143, 2020-2027.	4.1	148
118	Infanticide or Interference: Does the Great Reed Warbler Selectively Destroy Eggs?. Annales Zoologici Fennici, 2010, 47, 272-277.	0.6	18
119	Factors affecting the structure of bee assemblages in extensively and intensively grazed grasslands in Hungary. Community Ecology, 2009, 10, 182-188.	0.9	19
120	Species-specific distribution of two sympatric Maculinea butterflies across different meadow edges. Journal of Insect Conservation, 2009, 13, 223-230.	1.4	21
121	Nestâ€site selection and breeding ecology of Sky Larks <i>Alauda arvensis</i> i>in Hungarian farmland. Bird Study, 2009, 56, 259-263.	1.0	25
122	On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 903-909.	2.6	624
123	Interacting Effects of Vegetation Structure and Breeding Patterns on the Survival of Great Reed WarblerAcrocephalus arundinaceusNests. Ardea, 2009, 97, 109-116.	0.6	12
124	Restricted within-habitat movement and time-constrained egg laying of female Maculinea rebeli butterflies. Oecologia, 2008, 156, 455-464.	2.0	39
125	Are spiders reacting to local or landscape scale effects in Hungarian pastures?. Biological Conservation, 2008, 141, 2062-2070.	4.1	70
126	Dummy birds in artificial nest studies: an experiment with Red-backed Shrike <i>Lanius collurio</i> Bird Study, 2008, 55, 329-331.	1.0	13

#	Article	IF	CITATION
127	Management effects on carabid beetles and spiders in Central Hungarian grasslands and cereal fields. Community Ecology, 2008, 9, 247-254.	0.9	21
128	The effects of using different species conservation priority lists on the evaluation of habitat importance within Hungarian grasslands. Bird Conservation International, 2007, 17, 35-43.	1.3	13
129	Responses of grassland specialist and generalist beetles to management and landscape complexity. Diversity and Distributions, 2007, 13, 196-202.	4.1	90
130	Effects of local and landscape scale and cattle grazing intensity on Orthoptera assemblages of the Hungarian Great Plain. Basic and Applied Ecology, 2007, 8, 280-290.	2.7	76
131	Grassland versus non-grassland bird abundance and diversity in managed grasslands: local, landscape and regional scale effects. Biodiversity and Conservation, 2007, 16, 871-881.	2.6	85
132	Microhabitat preferences of Maculinea teleius (Lepidoptera: Lycaenidae) in a mosaic landscape. European Journal of Entomology, 2007, 104, 731-736.	1.2	23
133	Grassland versus non-grassland bird abundance and diversity in managed grasslands: local, landscape and regional scale effects. Topics in Biodiversity and Conservation, 2006, , 45-55.	1.0	4
134	Effects of grazing intensity on bird assemblages and populations of Hungarian grasslands. Agriculture, Ecosystems and Environment, 2005, 108, 251-263.	5.3	90
135	Evidence of an Edge Effect on Avian Nest Success. Conservation Biology, 2004, 18, 389-400.	4.7	230
136	Experiments with artificial nests on predation in reed habitats. Journal Fur Ornithologie, 2004, 145, 59-63.	1.2	37