List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2882391/publications.pdf Version: 2024-02-01

Δετε Γλτλον

#	Article	IF	CITATIONS
1	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	10.4	1,443
2	The role of agriâ€environment schemes in conservation and environmental management. Conservation Biology, 2015, 29, 1006-1016.	4.7	687
3	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	12.8	656
4	On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 903-909.	2.6	624
5	Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1894-1902.	2.6	460
6	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
7	When natural habitat fails to enhance biological pest control – Five hypotheses. Biological Conservation, 2016, 204, 449-458.	4.1	388
8	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
9	Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16442-16447.	7.1	312
10	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	9.5	259
11	How Agricultural Intensification Affects Biodiversity and Ecosystem Services. Advances in Ecological Research, 2016, 55, 43-97.	2.7	234
12	Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141358.	2.6	232
13	Evidence of an Edge Effect on Avian Nest Success. Conservation Biology, 2004, 18, 389-400.	4.7	230
14	Beyond organic farming – harnessing biodiversity-friendly landscapes. Trends in Ecology and Evolution, 2021, 36, 919-930.	8.7	219
15	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1	1 0.78431 1.9	4 rgBT /Over
16	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	1.9	178
17	Harnessing the biodiversity value of Central and Eastern European farmland. Diversity and Distributions, 2015, 21, 722-730.	4.1	172
18	Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A metaâ€analysis. Journal of Applied Ecology, 2018, 55, 2484-2495.	4.0	165

#	Article	IF	CITATIONS
19	Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172242.	2.6	153
20	Landâ€sharing/â€sparing connectivity landscapes for ecosystem services and biodiversity conservation. People and Nature, 2019, 1, 262-272.	3.7	152
21	Landscape-moderated importance of hedges in conserving farmland bird diversity of organic vs. conventional croplands and grasslands. Biological Conservation, 2010, 143, 2020-2027.	4.1	148
22	Responses of plant, insect and spider biodiversity to local and landscape scale management intensity in cereal crops and grasslands. Agriculture, Ecosystems and Environment, 2012, 146, 130-136.	5.3	138
23	Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agriculture, Ecosystems and Environment, 2010, 136, 35-39.	5.3	122
24	Landscape composition, connectivity and fragment size drive effects of grassland fragmentation on insect communities. Journal of Applied Ecology, 2013, 50, 387-394.	4.0	118
25	The former Iron Curtain still drives biodiversity–profit trade-offs in German agriculture. Nature Ecology and Evolution, 2017, 1, 1279-1284.	7.8	114
26	Conservation: Limits of Land Sparing. Science, 2011, 334, 593-593.	12.6	105
27	Set-aside management: How do succession, sowing patterns and landscape context affect biodiversity?. Agriculture, Ecosystems and Environment, 2011, 143, 37-44.	5.3	105
28	Responses of insect herbivores and herbivory to habitat fragmentation: a hierarchical metaâ€analysis. Ecology Letters, 2017, 20, 264-272.	6.4	105
29	Autonomous sound recording outperforms human observation for sampling birds: a systematic map and user guide. Ecological Applications, 2019, 29, e01954.	3.8	101
30	Interactive effects of landscape context constrain the effectiveness of local agriâ€environmental management. Journal of Applied Ecology, 2012, 49, 695-705.	4.0	100
31	Contrasting effects of massâ€flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecological Applications, 2013, 23, 1938-1946.	3.8	100
32	Effects of grazing intensity on bird assemblages and populations of Hungarian grasslands. Agriculture, Ecosystems and Environment, 2005, 108, 251-263.	5.3	90
33	Responses of grassland specialist and generalist beetles to management and landscape complexity. Diversity and Distributions, 2007, 13, 196-202.	4.1	90
34	Landscape configuration of crops and hedgerows drives local syrphid fly abundance. Journal of Applied Ecology, 2014, 51, 505-513.	4.0	90
35	Nonâ€linearities in bird responses across urbanization gradients: A metaâ€analysis. Global Change Biology, 2018, 24, 1046-1054	9.5	90
36	Density of insectâ€pollinated grassland plants decreases with increasing surrounding landâ€use intensity. Ecology Letters, 2014, 17, 1168-1177.	6.4	87

#	Article	IF	CITATIONS
37	Grassland versus non-grassland bird abundance and diversity in managed grasslands: local, landscape and regional scale effects. Biodiversity and Conservation, 2007, 16, 871-881.	2.6	85
38	Comparing the sampling performance of sound recorders versus point counts in bird surveys: A metaâ€analysis. Journal of Applied Ecology, 2018, 55, 2575-2586.	4.0	85
39	Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Diversity and Distributions, 2015, 21, 1204-1217.	4.1	82
40	Landscapeâ€scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. Journal of Applied Ecology, 2017, 54, 1804-1813.	4.0	82
41	Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia, 2015, 179, 209-222.	2.0	79
42	Landscape configuration, organic management, and withinâ€field position drive functional diversity of spiders and carabids. Journal of Applied Ecology, 2019, 56, 63-72.	4.0	77
43	Effects of local and landscape scale and cattle grazing intensity on Orthoptera assemblages of the Hungarian Great Plain. Basic and Applied Ecology, 2007, 8, 280-290.	2.7	76
44	Effect of crop management and landscape context on insect pest populations and crop damage. Agriculture, Ecosystems and Environment, 2013, 166, 118-125.	5.3	75
45	How do edge effect and tree species diversity change bird diversity and avian nest survival in Germany's largest deciduous forest?. Forest Ecology and Management, 2014, 319, 44-50.	3.2	72
46	Are spiders reacting to local or landscape scale effects in Hungarian pastures?. Biological Conservation, 2008, 141, 2062-2070.	4.1	70
47	Biologia Futura: landscape perspectives on farmland biodiversity conservation. Biologia Futura, 2020, 71, 9-18.	1.4	65
48	Mixed effects of landscape structure and farming practice on bird diversity. Agriculture, Ecosystems and Environment, 2011, 141, 119-125.	5.3	64
49	Effects of grazing and biogeographic regions on grassland biodiversity in Hungary – analysing assemblages of 1200 species. Agriculture, Ecosystems and Environment, 2013, 166, 28-34.	5.3	63
50	Spatial heterogeneity and farmland birds: different perspectives in Western and Eastern Europe. Ibis, 2011, 153, 875-876.	1.9	56
51	Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary. Insect Conservation and Diversity, 2012, 5, 57-66.	3.0	56
52	Transferring biodiversity-ecosystem function research to the management of â€~real-world' ecosystems. Advances in Ecological Research, 2019, 61, 323-356.	2.7	51
53	Larger pollinators deposit more pollen on stigmas across multiple plant species—A metaâ€analysis. Journal of Applied Ecology, 2021, 58, 699-707.	4.0	51
54	Does habitat heterogeneity increase farmland biodiversity?. Frontiers in Ecology and the Environment, 2011, 9, 152-153.	4.0	47

#	Article	IF	CITATIONS
55	Effectiveness of agriâ€environmental management on pollinators is moderated more by ecological contrast than by landscape structure or landâ€use intensity. Ecology Letters, 2019, 22, 1493-1500.	6.4	47
56	Configurational crop heterogeneity increases withinâ€field plant diversity. Journal of Applied Ecology, 2020, 57, 654-663.	4.0	47
57	Spillover of arthropods from cropland to protected calcareous grassland – the neighbouring habitat matters. Agriculture, Ecosystems and Environment, 2016, 235, 127-133.	5.3	45
58	Local and landscape effects on bee communities of Hungarian winter cereal fields. Agricultural and Forest Entomology, 2011, 13, 59-66.	1.3	44
59	Set-aside promotes insect and plant diversity in a Central European country. Agriculture, Ecosystems and Environment, 2011, 141, 296-301.	5.3	42
60	Small-scale agricultural landscapes and organic management support wild bee communities of cereal field boundaries. Agriculture, Ecosystems and Environment, 2018, 254, 92-98.	5.3	40
61	Restricted within-habitat movement and time-constrained egg laying of female Maculinea rebeli butterflies. Oecologia, 2008, 156, 455-464.	2.0	39
62	Ecosystem services and disservices provided by small rodents in arable fields: Effects of local and landscape management. Journal of Applied Ecology, 2018, 55, 548-558.	4.0	39
63	Agriâ€environment schemes enhance pollinator richness and abundance but bumblebee reproduction depends on field size. Journal of Applied Ecology, 2020, 57, 1818-1828.	4.0	39
64	Combining land-sparing and land-sharing in European landscapes. Advances in Ecological Research, 2021, , 251-303.	2.7	39
65	Environmentally friendly management as an intermediate strategy between organic and conventional agriculture to support biodiversity. Biological Conservation, 2014, 178, 146-154.	4.1	38
66	Maizeâ€dominated landscapes reduce bumblebee colony growth through pollen diversity loss. Journal of Applied Ecology, 2019, 56, 294-304.	4.0	38
67	Experiments with artificial nests on predation in reed habitats. Journal Fur Ornithologie, 2004, 145, 59-63.	1.2	37
68	The past and future of farmland birds in Hungary. Bird Study, 2011, 58, 365-377.	1.0	37
69	Grassland management in agricultural vs. forested landscapes drives butterfly and bird diversity. Biological Conservation, 2017, 216, 51-59.	4.1	37
70	High land-use intensity in grasslands constrains wild bee species richness in Europe. Biological Conservation, 2020, 241, 108255.	4.1	35
71	Crop rotation and agriâ€environment schemes determine bumblebee communities via flower resources. Journal of Applied Ecology, 2018, 55, 1714-1724.	4.0	34
72	The impact of hedge-forest connectivity and microhabitat conditions on spider and carabid beetle assemblages in agricultural landscapes. Journal of Insect Conservation, 2013, 17, 1027-1038.	1.4	33

#	Article	IF	CITATIONS
73	Interaction of local and landscape features in the conservation of Hungarian arable weed diversity. Applied Vegetation Science, 2011, 14, 40-48.	1.9	32
74	Landscape-moderated bird nest predation in hedges and forest edges. Acta Oecologica, 2012, 45, 50-56.	1.1	32
75	Wealth, water and wildlife: Landscape aridity intensifies the urban luxury effect. Global Ecology and Biogeography, 2020, 29, 1595-1605.	5.8	32
76	Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance – A meta-analysis. Agriculture, Ecosystems and Environment, 2022, 326, 107822.	5.3	32
77	Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields. PLoS ONE, 2013, 8, e54818.	2.5	30
78	Field experiments underestimate aboveground biomass response to drought. Nature Ecology and Evolution, 2022, 6, 540-545.	7.8	30
79	Effects of timing and frequency of mowing on the threatened scarce large blue butterfly – A fine-scale experiment. Agriculture, Ecosystems and Environment, 2014, 196, 24-33.	5.3	27
80	Contrasting effect of isolation of hedges from forests on farmland vs. woodland birds. Community Ecology, 2012, 13, 155-161.	0.9	26
81	Carabid functional diversity is enhanced by conventional flowering fields, organic winter cereals and edge habitats. Agriculture, Ecosystems and Environment, 2019, 284, 106579.	5.3	26
82	High critical forest habitat thresholds of native bird communities in Afrotropical agroforestry landscapes. Biological Conservation, 2019, 230, 20-28.	4.1	26
83	Nestâ€site selection and breeding ecology of Sky Larks <i>Alauda arvensis</i> in Hungarian farmland. Bird Study, 2009, 56, 259-263.	1.0	25
84	Forest specialist and generalist small mammals in forest edges and hedges. Wildlife Biology, 2016, 22, 86-94.	1.4	25
85	Arthropod functional traits shaped by landscape-scale field size, local agri-environment schemes and edge effects. Basic and Applied Ecology, 2020, 48, 102-111.	2.7	25
86	Biodiversity and yield tradeâ€offs for organic farming. Ecology Letters, 2022, 25, 1699-1710.	6.4	25
87	Functional beetle diversity in managed grasslands: effects of region, landscape context and land use intensity. Landscape Ecology, 2014, 29, 529-540.	4.2	24
88	Microhabitat preferences of Maculinea teleius (Lepidoptera: Lycaenidae) in a mosaic landscape. European Journal of Entomology, 2007, 104, 731-736.	1.2	23
89	Potential metapopulation structure and the effects of habitat quality on population size of the endangered False Ringlet butterfly. Journal of Insect Conservation, 2013, 17, 537-547.	1.4	22
90	Management effects on carabid beetles and spiders in Central Hungarian grasslands and cereal fields. Community Ecology, 2008, 9, 247-254.	0.9	21

#	Article	IF	CITATIONS
91	Species-specific distribution of two sympatric Maculinea butterflies across different meadow edges. Journal of Insect Conservation, 2009, 13, 223-230.	1.4	21
92	Factors affecting the structure of bee assemblages in extensively and intensively grazed grasslands in Hungary. Community Ecology, 2009, 10, 182-188.	0.9	19
93	Infanticide or Interference: Does the Great Reed Warbler Selectively Destroy Eggs?. Annales Zoologici Fennici, 2010, 47, 272-277.	0.6	18
94	Different habitat selection by two sympatric <i>Maculinea</i> butterflies at small spatial scale. Insect Conservation and Diversity, 2012, 5, 118-126.	3.0	18
95	Both local and landscape factors determine plant and Orthoptera diversity in the semi-natural grasslands of Transylvania, Romania. Biodiversity and Conservation, 2015, 24, 229-245.	2.6	18
96	Insectivorous and open-cup nester bird species suffer the most from urbanization. Bird Study, 2015, 62, 78-86.	1.0	17
97	Coating plasticine eggs can eliminate the overestimation of predation on artificial ground nests. Bird Study, 2012, 59, 350-352.	1.0	16
98	Effects of three flower field types on bumblebees and their pollen diets. Basic and Applied Ecology, 2021, 52, 95-108.	2.7	16
99	Trait-based paradise - about the importance of real functionality. Community Ecology, 2019, 20, 314-316.	0.9	15
100	Urbanization hampers biological control of insect pests: A global meta-analysis. Science of the Total Environment, 2022, 834, 155396.	8.0	15
101	Management of reedbeds: mosaic reed cutting does not affect prey abundance and nest predation rate of reed passerine birds. Wetlands Ecology and Management, 2014, 22, 227-234.	1.5	14
102	The effects of using different species conservation priority lists on the evaluation of habitat importance within Hungarian grasslands. Bird Conservation International, 2007, 17, 35-43.	1.3	13
103	Dummy birds in artificial nest studies: an experiment with Red-backed Shrike <i>Lanius collurio</i> . Bird Study, 2008, 55, 329-331.	1.0	13
104	Connectedness of habitat fragments boosts conservation benefits for butterflies, but only in landscapes with little cropland. Landscape Ecology, 2019, 34, 1045-1056.	4.2	13
105	Agricultural intensification at local and landscape scales impairs farmland birds, but not skylarks (Alauda arvensis). Agriculture, Ecosystems and Environment, 2019, 277, 21-24.	5.3	13
106	Flowering fields, organic farming and edge habitats promote diversity of plants and arthropods on arable land. Journal of Applied Ecology, 2021, 58, 1155-1166.	4.0	13
107	Interacting Effects of Vegetation Structure and Breeding Patterns on the Survival of Great Reed WarblerAcrocephalus arundinaceusNests. Ardea, 2009, 97, 109-116.	0.6	12
108	Irreproducibility in searches of scientific literature: A comparative analysis. Ecology and Evolution, 2021, 11, 14658-14668.	1.9	12

#	Article	IF	CITATIONS
109	Insect and plant traits drive local and landscape effects on herbivory in grassland fragments. Ecosphere, 2019, 10, e02717.	2.2	9
110	Smaller and Isolated Grassland Fragments Are Exposed to Stronger Seed and Insect Predation in Habitat Edges. Forests, 2021, 12, 54.	2.1	9
111	Fragment connectivity shapes bird communities through functional trait filtering in two types of grasslands. Global Ecology and Conservation, 2021, 28, e01687.	2.1	9
112	Increasing connectivity enhances habitat specialists but simplifies plant–insect food webs. Oecologia, 2021, 195, 539-546.	2.0	9
113	Historical, local and landscape factors determine the success of grassland restoration for arthropods. Agriculture, Ecosystems and Environment, 2021, 308, 107271.	5.3	8
114	Urbanization does not affect green space bird species richness in a mid-sized city. Urban Ecosystems, 2021, 24, 789-800.	2.4	8
115	Organic farming supports lower pest infestation, but fewer natural enemies than flower strips. Journal of Applied Ecology, 2021, 58, 2277-2286.	4.0	8
116	Conservation biology research priorities for 2050: A Central-Eastern European perspective. Biological Conservation, 2021, 264, 109396.	4.1	8
117	Urbanization shapes bird communities and nest survival, but not their food quantity. Global Ecology and Conservation, 2021, 26, e01475.	2.1	7
118	Restoring biodiversity needs more than reducing pesticides. Trends in Ecology and Evolution, 2022, 37, 115-116.	8.7	7
119	Landscape structure is a major driver of plant and arthropod diversity in natural European forest fragments. Ecosphere, 2022, 13, e3905.	2.2	7
120	Fragmentation of forest-steppe predicts functional community composition of wild bee and wasp communities. Global Ecology and Conservation, 2022, 33, e01988.	2.1	7
121	Environmentally-friendly and organic management practices enable complementary diversification of plant–bumblebee food webs. Basic and Applied Ecology, 2021, 53, 164-174.	2.7	6
122	Vulnerability of Ecosystem Services in Farmland Depends on Landscape Management. , 2019, , 91-96.		5
123	Scale-dependent effectiveness of on-field vs. off-field agri-environmental measures for wild bees. Basic and Applied Ecology, 2022, 62, 55-60.	2.7	5
124	No place for ground-dwellers in cities: A meta-analysis on bird functional traits. Global Ecology and Conservation, 2022, 38, e02217.	2.1	5
125	Large carabids enhance weed seed removal in organic fields and in large-scale, but not small-scale agriculture. Landscape Ecology, 2021, 36, 427-438.	4.2	4
126	Grassland versus non-grassland bird abundance and diversity in managed grasslands: local, landscape and regional scale effects. Topics in Biodiversity and Conservation, 2006, , 45-55.	1.0	4

#	Article	IF	CITATIONS
127	Grassland type and presence of management shape butterfly functional diversity in agricultural and forested landscapes. Global Ecology and Conservation, 2022, 35, e02096.	2.1	4
128	Combination of organic farming and flower strips in agricultural landscapes – A feasible method to maximise functional diversity of plant traits related to pollination. Global Ecology and Conservation, 2022, 38, e02229.	2.1	4
129	Organic winter cereals benefit bumblebee colonies in agricultural landscapes with massâ€flowering crops. Insect Conservation and Diversity, 2021, 14, 504-514.	3.0	3
130	Scent, rather than fur pattern, determines predation of mice: an inâ€theâ€wild experiment with plasticine mouse models. Journal of Zoology, 2022, 316, 223-228.	1.7	3
131	Not only hedgerows, but also flower fields can enhance bat activity in intensively used agricultural landscapes. Basic and Applied Ecology, 2022, 63, 23-35.	2.7	3
132	Effects of fertilizer application on summer usage of cereal fields by farmland birds in central Hungary. Bird Study, 2011, 58, 330-337.	1.0	2
133	Matrix quality and habitat type drive the diversity pattern of forest steppe fragments. Perspectives in Ecology and Conservation, 2022, 20, 60-68.	1.9	2
134	Prioritise the most effective measures for biodiversity-friendly agriculture. Trends in Ecology and Evolution, 2022, , .	8.7	2
135	Spatiotemporal land-use diversification for biodiversity. Trends in Ecology and Evolution, 2022, , .	8.7	2
136	The Unmeasured ecological effect of mosquito control. European Journal of Ecology, 2020, 6, 71-76.	0.3	1