Chao Yi Yan

List of Publications by Citations

Source: https://exaly.com/author-pdf/2882314/chao-yi-yan-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,109 29 31 20 h-index g-index citations papers 31 3,430 14.7 5.22 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
29	Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. <i>Advanced Materials</i> , 2014 , 26, 2022-7	24	840
28	Stretchable and wearable electrochromic devices. ACS Nano, 2014, 8, 316-22	16.7	326
27	Highfate electrochemical capacitors from highly graphitic carbonfipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. <i>Energy and Environmental Science</i> , 2011 , 4, 1813	35.4	283
26	Stretchable graphene thermistor with tunable thermal index. ACS Nano, 2015, 9, 2130-7	16.7	223
25	Highly stretchable and self-deformable alternating current electroluminescent devices. <i>Advanced Materials</i> , 2015 , 27, 2876-82	24	186
24	Extremely Stretchable Electroluminescent Devices with Ionic Conductors. <i>Advanced Materials</i> , 2016 , 28, 4490-6	24	146
23	Achieving High Rate Performance in Layered Hydroxide Supercapacitor Electrodes. <i>Advanced Energy Materials</i> , 2014 , 4, 1301240	21.8	146
22	Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time. <i>Applied Physics Letters</i> , 2010 , 96, 053108	3.4	144
21	New Strategy for Polysulfide Protection Based on Atomic Layer Deposition of TiO2 onto Ferroelectric-Encapsulated Cathode: Toward Ultrastable Free-Standing Room Temperature SodiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1705537	15.6	134
20	An intrinsically stretchable nanowire photodetector with a fully embedded structure. <i>Advanced Materials</i> , 2014 , 26, 943-50	24	132
19	Stretchable Silver-Zinc Batteries Based on Embedded Nanowire Elastic Conductors. <i>Advanced Energy Materials</i> , 2014 , 4, 1301396	21.8	103
18	Cryogel Synthesis of Hierarchical Interconnected Macro-/Mesoporous Co3O4 with Superb Electrochemical Energy Storage. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 4930-4935	3.8	79
17	Binder-free Co(OH)2 nanoflakeITO nanowire heterostructured electrodes for electrochemical energy storage with improved high-rate capabilities. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10482		55
16	3D Printing of Free-Standing Stretchable Electrodes with Tunable Structure and Stretchability. <i>Advanced Engineering Materials</i> , 2017 , 19, 1700341	3.5	42
15	Rational design of a high performance all solid state flexible micro-supercapacitor on paper. <i>RSC Advances</i> , 2013 , 3, 15827	3.7	40
14	Solution-assembled nanowires for high performance flexible and transparent solar-blind photodetectors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 596-600	7.1	37
13	Morphology Control of Indium Germanate Nanowires, Nanoribbons, and Hierarchical Nanostructures. <i>Crystal Growth and Design</i> , 2009 , 9, 3697-3701	3.5	28

LIST OF PUBLICATIONS

12	ACS Nano, 2011 , 5, 5006-14	16.7	27
11	Kinking-induced structural evolution of metal oxide nanowires into single-crystalline nanorings. <i>ACS Nano</i> , 2010 , 4, 5350-6	16.7	27
10	Crystallographic Alignment of ZnO Nanorod Arrays on Zn2GeO4 Nanocrystals: Promising Lattice-Matched Substrates. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 265-268	3.8	23
9	Single Crystalline Semi-Nanotubes of Indium Germanate. <i>Crystal Growth and Design</i> , 2008 , 8, 3144-3147	3.5	19
8	Flow assisted synthesis of highly ordered silica nanowire arrays. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 94, 763-766	2.6	17
7	Self-Assembly-Assisted Facile Synthesis of MoS-Based Hybrid Tubular Nanostructures for Efficient Bifunctional Electrocatalysis. <i>ACS Applied Materials & Discrete Materials & Dis</i>	9.5	17
6	Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors. <i>Sensors</i> , 2018 , 18,	3.8	15
5	Graphene: Highly Stretchable Piezoresistive Graphene®lanocellulose Nanopaper for Strain Sensors (Adv. Mater. 13/2014). <i>Advanced Materials</i> , 2014 , 26, 1950-1950	24	15
4	Electroluminescent Devices: Highly Stretchable and Self-Deformable Alternating Current Electroluminescent Devices (Adv. Mater. 18/2015). <i>Advanced Materials</i> , 2015 , 27, 2947-2947	24	2
3	Stretchable Electronics: Stretchable Energy Storage and Conversion Devices (Small 17/2014). <i>Small</i> , 2014 , 10, 3442-3442	11	1
2	Electroluminescent Devices: Extremely Stretchable Electroluminescent Devices with Ionic Conductors (Adv. Mater. 22/2016). <i>Advanced Materials</i> , 2016 , 28, 4489	24	1
1	Nanowire Photodetectors: An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure (Adv. Mater. 6/2014). <i>Advanced Materials</i> , 2014 , 26, 979-979	24	_