Giorgio Stassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2882022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells. Gut, 2022, 71, 119-128.	6.1	46
2	Dual Inhibition of Myc Transcription and PI3K Activity Effectively Targets Colorectal Cancer Stem Cells. Cancers, 2022, 14, 673.	1.7	4
3	Dissecting the Mechanism of Action of Spiperone—A Candidate for Drug Repurposing for Colorectal Cancer. Cancers, 2022, 14, 776.	1.7	3
4	Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51. Oncogene, 2022, 41, 2196-2209.	2.6	8
5	Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules, 2022, 12, 702.	1.8	3
6	Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. Nature Cancer, 2022, 3, 1052-1070.	5.7	36
7	A perspective analysis: microRNAs, glucose metabolism, and drug resistance in colon cancer stem cells. Cancer Gene Therapy, 2021, , .	2.2	6
8	Pharmacological targeting of the novel β-catenin chromatin-associated kinase p38α in colorectal cancer stem cell tumorspheres and organoids. Cell Death and Disease, 2021, 12, 316.	2.7	11
9	Magnetic Nanoparticle-Based Hyperthermia Mediates Drug Delivery and Impairs the Tumorigenic Capacity of Quiescent Colorectal Cancer Stem Cells. ACS Applied Materials & Interfaces, 2021, 13, 15959-15972.	4.0	35
10	CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin. IScience, 2021, 24, 102664.	1.9	31
11	Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. Frontiers in Oncology, 2021, 11, 702642.	1.3	21
12	Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery. Nature Communications, 2021, 12, 5006.	5.8	38
13	Nobiletin and Xanthohumol Sensitize Colorectal Cancer Stem Cells to Standard Chemotherapy. Cancers, 2021, 13, 3927.	1.7	20
14	Adipose stromal cells promote the transition of colorectal cancer cells toward a mesenchymal-like phenotype. Molecular and Cellular Oncology, 2021, 8, 1986343.	0.3	1
15	Targeting Phosphatases and Kinases: How to Checkmate Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 690306.	1.8	21
16	Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene, 2020, 39, 987-1003.	2.6	24
17	ROS and Lipid Droplet accumulation induced by high glucose exposure in healthy colon and Colorectal Cancer Stem Cells. Genes and Diseases, 2020, 7, 620-635.	1.5	26
18	The Hippo Show Must Go On: YAP Activation as a Therapeutic Strategy in Colorectal Cancer. Cell Stem Cell, 2020, 27, 501-502.	5.2	3

GIORGIO STASSI

#	Article	IF	CITATIONS
19	Metabolic Escape Routes of Cancer Stem Cells and Therapeutic Opportunities. Cancers, 2020, 12, 1436.	1.7	15
20	Cancer Stem Cells: From Birth to Death. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 1-30.	0.1	1
21	DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 2019, 11, 587-604.	1.0	29
22	Meeting the Challenge of Targeting Cancer Stem Cells. Frontiers in Cell and Developmental Biology, 2019, 7, 16.	1.8	109
23	Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Molecular Cancer, 2019, 18, 70.	7.9	361
24	Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models. Cell Death and Differentiation, 2018, 25, 616-633.	5.0	137
25	CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut, 2018, 67, 903-917.	6.1	64
26	Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nature Cell Biology, 2018, 20, 1193-1202.	4.6	138
27	PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer. Scientific Reports, 2017, 7, 43013.	1.6	44
28	IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Research, 2017, 77, 3268-3279.	0.4	49
29	Innovative Therapeutic Strategies Targeting Colorectal Cancer Stem Cells. Current Colorectal Cancer Reports, 2017, 13, 91-100.	1.0	1
30	Role of Type I and II Interferons in Colorectal Cancer and Melanoma. Frontiers in Immunology, 2017, 8, 878.	2.2	60
31	Combined platelet-rich plasma and lipofilling treatment provides great improvement in facial skin-induced lesion regeneration for scleroderma patients. Stem Cell Research and Therapy, 2017, 8, 236.	2.4	39
32	Cancer Stem Cell-Based Models of Colorectal Cancer Reveal Molecular Determinants of Therapy Resistance. Stem Cells Translational Medicine, 2016, 5, 511-523.	1.6	48
33	Epithelial–mesenchymal transition: a new target in anticancer drug discovery. Nature Reviews Drug Discovery, 2016, 15, 311-325.	21.5	290
34	Activated Thyroid Hormone Promotes Differentiation and Chemotherapeutic Sensitization of Colorectal Cancer Stem Cells by Regulating Wnt and BMP4 Signaling. Cancer Research, 2016, 76, 1237-1244.	0.4	72
35	ΔNp63 drives metastasis in breast cancer cells <i>via</i> PI3K/CD44v6 axis. Oncotarget, 2016, 7, 54157-54173.	0.8	25
36	Betulinic Acid Kills Colon Cancer Stem Cells. Current Stem Cell Research and Therapy, 2016, 11, 427-433.	0.6	36

GIORGIO STASSI

#	Article	IF	CITATIONS
37	A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE, 2015, 10, e0125697.	1.1	14
38	Lipid Droplets: A New Player in Colorectal Cancer Stem Cells Unveiled by Spectroscopic Imaging. Stem Cells, 2015, 33, 35-44.	1.4	185
39	Resistance of Cancer Stem Cells to Cell-Mediated Immune Responses. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 3-29.	0.1	2
40	By promoting cell differentiation, miR-100 sensitizes basal-like breast cancer stem cells to hormonal therapy. Oncotarget, 2015, 6, 2315-2330.	0.8	43
41	Targeting Cancer Stem Cells and the Tumor Microenvironment. , 2015, , 445-476.		0
42	Colorectal Cancer Stem Cells: From the Crypt to the Clinic. Cell Stem Cell, 2014, 15, 692-705.	5.2	340
43	CD44v6 Is a Marker of Constitutive and Reprogrammed Cancer Stem Cells Driving Colon Cancer Metastasis. Cell Stem Cell, 2014, 14, 342-356.	5.2	617
44	Tumor and its microenvironment: A synergistic interplay. Seminars in Cancer Biology, 2013, 23, 522-532.	4.3	344
45	CD133 as a target for colon cancer. Expert Opinion on Therapeutic Targets, 2012, 16, 259-267.	1.5	30
46	Cancer stem cell definitions and terminology: the devil is in the details. Nature Reviews Cancer, 2012, 12, 767-775.	12.8	599
47	Bone Morphogenetic Protein 4 Induces Differentiation of Colorectal Cancer Stem Cells and Increases Their Response to Chemotherapy in Mice. Gastroenterology, 2011, 140, 297-309.e6.	0.6	202
48	Colorectal Cancer Stem Cells and Cell Death. Cancers, 2011, 3, 1929-1946.	1.7	15
49	Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature, 2010, 468, 824-828.	13.7	1,235
50	Tumorigenic and Metastatic Activity of Human Thyroid Cancer Stem Cells. Cancer Research, 2010, 70, 8874-8885.	0.4	197
51	Evidences of cervical cancer stem cells derived from established cell lines. Cell Cycle, 2010, 9, 1231-1240.	1.3	4
52	Colon Cancer Stem Cells: Promise of Targeted Therapy. Gastroenterology, 2010, 138, 2151-2162.	0.6	411
53	Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 2010, 12, 468-476.	4.6	1,623
54	Crucial Role of Interleukin-4 in the Survival of Colon Cancer Stem Cells. Cancer Research, 2008, 68, 4022-4025.	0.4	113

#	Article	IF	CITATIONS
55	IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle, 2008, 7, 309-313.	1.3	125
56	Colon Cancer Stem Cells Dictate Tumor Growth and Resist Cell Death by Production of Interleukin-4. Cell Stem Cell, 2007, 1, 389-402.	5.2	968