List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2881984/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Power Efficient Communications Employing Phase Sensitive Pre-Amplified Receiver. IEEE Photonics Technology Letters, 2022, 34, 3-6.                                | 1.3 | 3         |
| 2  | Model-Based End-to-End Learning for WDM Systems With Transceiver Hardware Impairments. IEEE<br>Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-14. | 1.9 | 9         |
| 3  | Spectral Interferometry with Frequency Combs. Micromachines, 2022, 13, 614.                                                                                       | 1.4 | 2         |
| 4  | Periodicity-Enabled Size Reduction of Symbol Based Predistortion for High-Order QAM. Journal of<br>Lightwave Technology, 2022, 40, 6168-6178.                     | 2.7 | 7         |
| 5  | Elliptical-Core Highly Nonlinear Few-Mode Fiber Based OXC for WDM-MDM Networks. IEEE Journal of<br>Selected Topics in Quantum Electronics, 2021, 27, 1-11.        | 1.9 | 6         |
| 6  | High Spectral Efficiency Coherent Superchannel Transmission With Soliton Microcombs. Journal of<br>Lightwave Technology, 2021, 39, 4367-4373.                     | 2.7 | 34        |
| 7  | Experimental Demonstration of 8-Dimensional Voronoi Constellations with 65,536 and 16,777,216 Symbols. , 2021, , .                                                |     | 2         |
| 8  | Characterisation of a Coupled-Core Fiber Using Dual-Comb Swept-Wavelength Interferometry. , 2021, , .                                                             |     | 3         |
| 9  | Symbol-Based Supervised Learning Predistortion for Compensating Transmitter Nonlinearity. , 2021, , .                                                             |     | 3         |
| 10 | Phase-coherent lightwave communications with frequency combs. Nature Communications, 2020, 11, 201.                                                               | 5.8 | 73        |
| 11 | One photon-per-bit receiver using near-noiseless phase-sensitive amplification. Light: Science and Applications, 2020, 9, 153.                                    | 7.7 | 33        |
| 12 | Joint Superchannel Digital Signal Processing for Effective Inter-Channel Interference Cancellation.<br>Journal of Lightwave Technology, 2020, 38, 5676-5684.      | 2.7 | 13        |
| 13 | Performance Monitoring for Live Systems with Soft FEC and Multilevel Modulation. Journal of Lightwave Technology, 2020, , 1-1.                                    | 2.7 | 4         |
| 14 | One photon per bit communication for free-space optical links. , 2020, , .                                                                                        |     | 0         |
| 15 | Look-up Table based Pre-distortion for Transmitters Employing High-Spectral-Efficiency Modulation Formats. , 2020, , .                                            |     | 9         |
| 16 | Multi-Channel Comb Modulation in Single Waveguide Structures. , 2020, , .                                                                                         |     | 0         |
| 17 | Dual-Comb Swept Wavelength Interferometry. , 2020, , .                                                                                                            |     | 3         |
| 18 | Multi-Channel Equalization for Comb-Based Systems. , 2020, , .                                                                                                    |     | 1         |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Required and Received SNRs in Coded Modulation. , 2020, , .                                                                                                                     |     | Ο         |
| 20 | Laser Frequency Combs for Coherent Optical Communications. Journal of Lightwave Technology, 2019,<br>37, 1663-1670.                                                             | 2.7 | 96        |
| 21 | Roadmap on all-optical processing. Journal of Optics (United Kingdom), 2019, 21, 063001.                                                                                        | 1.0 | 128       |
| 22 | Experimental Investigation of Link Impairments in Pilot Tone Aided Superchannel Transmission. IEEE<br>Photonics Technology Letters, 2019, 31, 459-462.                          | 1.3 | 2         |
| 23 | Dielectric Broadband Metasurfaces for Fiber Modeâ€Multiplexed Communications. Advanced Optical<br>Materials, 2019, 7, 1801679.                                                  | 3.6 | 20        |
| 24 | Phase Noise Characterization and EEPN of a Full C-Band Tunable Laser in Coherent Optical Systems.<br>IEEE Photonics Technology Letters, 2019, 31, 1991-1994.                    | 1.3 | 0         |
| 25 | 12 b/s/Hz Spectral Efficiency Over the C-band Based on Comb-Based Superchannels. Journal of<br>Lightwave Technology, 2019, 37, 411-417.                                         | 2.7 | 13        |
| 26 | Record-sensitivity Gb/s receiver for free-space applications based on phase-sensitive amplification. , 2019, , .                                                                |     | 5         |
| 27 | Superchannel engineering of microcombs for optical communications. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2013.                                | 0.9 | 19        |
| 28 | Overhead-optimization of pilot-based digital signal processing for flexible high spectral efficiency transmission. Optics Express, 2019, 27, 24654.                             | 1.7 | 47        |
| 29 | Design, fabrication, and characterization of a highly nonlinear few-mode fiber. Photonics Research, 2019, 7, 1354.                                                              | 3.4 | 14        |
| 30 | Frequency Comb Based High-Spectral Efficiency Transmission. , 2019, , .                                                                                                         |     | 0         |
| 31 | High Spectral Efficiency PM-128QAM Comb-Based Superchannel Transmission Enabled by a Single<br>Shared Optical Pilot Tone. Journal of Lightwave Technology, 2018, 36, 1318-1325. | 2.7 | 36        |
| 32 | 10 Tb/s PM-64QAM Self-Homodyne Comb-Based Superchannel Transmission With 4% Shared Pilot Tone<br>Overhead. Journal of Lightwave Technology, 2018, 36, 3176-3184.                | 2.7 | 41        |
| 33 | High-Spectral-Efficiency Mode-Multiplexed Transmission Over Graded-Index Multimode Fiber. , 2018, , .                                                                           |     | 59        |
| 34 | Frequency Comb-Based WDM Transmission Systems Enabling Joint Signal Processing. Applied Sciences (Switzerland), 2018, 8, 718.                                                   | 1.3 | 56        |
| 35 | Comparison of principal modes and spatial eigenmodes in multimode optical fibre. Laser and Photonics<br>Reviews, 2017, 11, 1600259.                                             | 4.4 | 20        |
| 36 | Phase-Sensitive Amplification in Silicon and Chalcogenide Waveguides. , 2016, , .                                                                                               |     | 0         |

3

| #  | Article                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Polarization-resolved cross-correlated (C^2) imaging of a photonic bandgap fiber. Optics Express, 2016, 24, 27785.                                            | 1.7  | 6         |
| 38 | Principal modes in 50μ m graded-index multimode fiber. , 2016, , .                                                                                            |      | 0         |
| 39 | Multipass Performance of a Chip-Enhanced WSS for Nyquist-WDM Sub-Band Switching. Journal of<br>Lightwave Technology, 2016, 34, 1824-1830.                     | 2.7  | 18        |
| 40 | Complete spatiotemporal characterization and optical transfer matrix inversion of a 420 mode fiber.<br>Optics Letters, 2016, 41, 5580.                        | 1.7  | 34        |
| 41 | Principal modes in multimode fibre: Modes with minimal mode dispersion. , 2016, , .                                                                           |      | 0         |
| 42 | Non-degenerate two-photon absorption in silicon waveguides: analytical and experimental study.<br>Optics Express, 2015, 23, 17101.                            | 1.7  | 23        |
| 43 | Spectrum-Sliced Microwave-Photonic Filter Based on Fourier Transform of Modified Optical<br>Spectrum. IEEE Photonics Technology Letters, 2015, 27, 1422-1425. | 1.3  | 8         |
| 44 | LCoS-based devices for MDM. , 2015, , .                                                                                                                       |      | 4         |
| 45 | Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nature<br>Photonics, 2015, 9, 751-757.                                     | 15.6 | 133       |
| 46 | Cross Nonlinear Absorption in Silicon Waveguides. , 2015, , .                                                                                                 |      | 0         |
| 47 | 6 port 3×3 Wavelength Selective Cross-Connect by Software-Only Reprogramming of a 1xN Wavelength<br>Selective Switch. , 2015, , .                             |      | 3         |
| 48 | Non-degenerate Two-photon Absorption in Silicon Waveguides. , 2015, , .                                                                                       |      | 0         |
| 49 | Applications of spatial light modulators for mode-division multiplexing. , 2014, , .                                                                          |      | 1         |
| 50 | Reconfigurable spatially-diverse optical vector network analyzer. Optics Express, 2014, 22, 2706.                                                             | 1.7  | 27        |
| 51 | Flexible all-optical frequency allocation of OFDM subcarriers. Optics Express, 2014, 22, 1045.                                                                | 1.7  | 22        |
| 52 | 1x11 few-mode fiber wavelength selective switch using photonic lanterns. Optics Express, 2014, 22, 2216.                                                      | 1.7  | 46        |
| 53 | Reconfigurable linear combination of phase-and-amplitude coded optical signals. Optics Express, 2014, 22, 2609.                                               | 1.7  | 2         |
| 54 | Pump-degenerate phase-sensitive amplification in chalcogenide waveguides. Journal of the Optical<br>Society of America B: Optical Physics, 2014, 31, 780.     | 0.9  | 19        |

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mode Transfer Matrix of Multimode Fibers. , 2014, , .                                                                                                            |     | 0         |
| 56 | Spatial light modulators for space-division multiplexing. , 2014, , .                                                                                            |     | 0         |
| 57 | First demonstration of principal modes in a multimode fibre. , 2014, , .                                                                                         |     | 10        |
| 58 | All-Optical OFDM With Cyclic Prefix Insertion Using Flexible Wavelength Selective Switch Optical Processing. Journal of Lightwave Technology, 2014, 32, 752-759. | 2.7 | 32        |
| 59 | Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nature Communications, 2014, 5, 3246.             | 5.8 | 79        |
| 60 | 110x110 optical mode transfer matrix inversion. Optics Express, 2014, 22, 96.                                                                                    | 1.7 | 120       |
| 61 | Phase-sensitive amplification in silicon photonic crystal waveguides. Optics Letters, 2014, 39, 363.                                                             | 1.7 | 46        |
| 62 | Applications of LCoS-Based Programmable Optical Processors. , 2014, , .                                                                                          |     | 7         |
| 63 | Wavelength selective switching and pulse-shaping for mode-division multiplexing using LCOS-technology. , 2014, , .                                               |     | 0         |
| 64 | Mode multiplexing, characterization and processing using a Spatial Light Modulator. , 2013, , .                                                                  |     | 1         |
| 65 | Mode multiplexed single-photon and classical channels in a few-mode fiber. Optics Express, 2013, 21, 28794.                                                      | 1.7 | 33        |
| 66 | Automatic DGD and GVD compensation at 640ÂGb/s based on scalar radio-frequency spectrum measurement. Applied Optics, 2013, 52, 1919.                             | 0.9 | 0         |
| 67 | An optical FPGA: Reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing. Optics Express, 2013, 21, 690.                   | 1.7 | 50        |
| 68 | Phase-sensitive amplification of light in a χ^(3) photonic chip using a dispersion engineered chalcogenide ridge waveguide. Optics Express, 2013, 21, 7926.      | 1.7 | 41        |
| 69 | All-optical hash code generation and verification for low latency communications. Optics Express, 2013, 21, 23873.                                               | 1.7 | 3         |
| 70 | Flexible All-Optical OFDM using WSSs. , 2013, , .                                                                                                                |     | 1         |
| 71 | Flexible All-Optical OFDM using WSSs. , 2013, , .                                                                                                                |     | 5         |
|    |                                                                                                                                                                  |     |           |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Breaking the Tbit/s Barrier: Higher Bandwidth Optical Processing. Optics and Photonics News, 2012, 23, 32.                                                          | 0.4 | 1         |
| 74 | Multi-order, automatic dispersion compensation for 1.28 Terabaud signals. , 2012, , .                                                                               |     | 0         |
| 75 | LCOS based waveshaper technology for optical signal processing and performance monitoring. , 2012, , .                                                              |     | 2         |
| 76 | Photonic-Chip-Based Ultrafast Waveform Analysis and Optical Performance Monitoring. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 834-846.      | 1.9 | 3         |
| 77 | Emulation of modulated data channels in optical networks using a programmable optical processor. , 2011, , .                                                        |     | 0         |
| 78 | OSNR Monitoring of a 1.28 Tbaud Signal by Interferometry Inside a Wavelength-Selective Switch.<br>Journal of Lightwave Technology, 2011, 29, 1542-1546.             | 2.7 | 9         |
| 79 | Silicon-Chip-Based Real-Time Dispersion Monitoring for 640 Cbit/s DPSK Signals. Journal of Lightwave Technology, 2011, 29, 1790-1796.                               | 2.7 | 44        |
| 80 | Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals. Optics Letters, 2011, 36, 710.                                                         | 1.7 | 43        |
| 81 | Chromatic dispersion compensation of an OCT system with a programmable spectral filter. , 2011, , .                                                                 |     | 1         |
| 82 | Phase and amplitude optimization in an optical coherence tomography system using a programmable spectral filter. , 2011, , .                                        |     | 0         |
| 83 | Tunable, repetition rate selective, passive mode-locked fibre laser with repetition rates up to 640 GHz.<br>Proceedings of SPIE, 2010, , .                          | 0.8 | 0         |
| 84 | Automatic higher-order dispersion measurement and compensation of a 1.28 Tbaud signal. , 2010, , .                                                                  |     | 0         |
| 85 | Simultaneous multi-channel OSNR monitoring at 40 Gb/s OOK and DPSK using a wavelength selective switch. , 2010, , .                                                 |     | 0         |
| 86 | Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens. Optics Communications, 2010, 283, 2611-2614.                              | 1.0 | 13        |
| 87 | Photonic chip based all-optical logic gate for 40 Gbit/s and 160 Gbit/s DPSK signals. , 2010, , .                                                                   |     | 0         |
| 88 | Silicon chip based instantaneous dispersion monitoring for a 640 Gbit/s DPSK signal. , 2010, , .                                                                    |     | 0         |
| 89 | Multi-Impairment Monitoring at 320 Gb/s Based on Cross-Phase Modulation Radio-Frequency Spectrum<br>Analyzer. IEEE Photonics Technology Letters, 2010, 22, 428-430. | 1.3 | 19        |
| 90 | Simultaneous multi-channel OSNR monitoring with a wavelength selective switch. Optics Express, 2010, 18, 22299.                                                     | 1.7 | 13        |

| #   | Article                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Automatic dispersion compensation for 128Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring. Optics Express, 2010, 18, 25415.           | 1.7 | 14        |
| 92  | Interplay of four-wave mixing processes with a mixed coherent-incoherent pump. Optics Express, 2010, 18, 25833.                                                    | 1.7 | 5         |
| 93  | Photonic Chip-Based Simultaneous Multi-Impairment Monitoring for Phase-Modulated Optical Signals.<br>Journal of Lightwave Technology, 2010, , .                    | 2.7 | 4         |
| 94  | Wavelength and repetition rate tunable mode-locked laser at up to 640 GHz using reconfigurable wavelength selective switch. , 2009, , .                            |     | 0         |
| 95  | Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz. Optics Letters, 2009, 34, 3902.                                                  | 1.7 | 60        |
| 96  | Observation of high-contrast, fast intensity noise of a continuous wave Raman fiber laser. Optics<br>Express, 2009, 17, 16444.                                     | 1.7 | 15        |
| 97  | Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser. Journal of the<br>Optical Society of America B: Optical Physics, 2008, 25, 1178. | 0.9 | 55        |
| 98  | Noise-characterization of an ultra-fast Raman fiber laser. , 2008, , .                                                                                             |     | 0         |
| 99  | Characterization of a passively mode-locked Raman fiber laser. , 2008, , .                                                                                         |     | 0         |
| 100 | Passively mode-locked Raman fiber laser with 100 GHz repetition rate. Optics Letters, 2006, 31, 3489.                                                              | 1.7 | 71        |
| 101 | <title>Dynamic instability of counterpropagating self-trapped beams in photorefractive media</title> . ,<br>2006, , .                                              |     | 2         |
| 102 | Ultra-high repetition-rate passively mode-locked Raman fiber laser. , 2006, , .                                                                                    |     | 0         |
| 103 | Dynamic instability of self-induced bidirectional waveguides in photorefractive media. Optics Letters, 2005, 30, 750.                                              | 1.7 | 13        |
| 104 | Counterpropagating dipole-mode vector soliton. Optics Letters, 2005, 30, 1042.                                                                                     | 1.7 | 9         |
| 105 | Optical control of arrays of photorefractive screening solitons. Optics Letters, 2003, 28, 438.                                                                    | 1.7 | 58        |
| 106 | Photonic applications of spatial photorefractive solitons - soliton lattices, bidirectional waveguides and waveguide couplers. , 2003, , .                         |     | 1         |