Roberto AndrÃ© Kraenkel

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/288196/publications.pdf
Version: 2024-02-01
1 Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length.
Physical Review A, 2003, 67, .
Coherent atomic oscillations and resonances between coupled Bose-Einstein condensates with
$2 \begin{aligned} & \text { Coherent atomic oscillations and resonances between coupled Bo } \\ & \text { time-dependent trapping potential. Physical Review A, 2000, 62, . }\end{aligned}$
2.5
Dissipationless shock waves in Bose-Einstein condensates with repulsive interaction between atoms.
88
$3 \quad \begin{aligned} & \text { Dissipationless shock waves in } \\ & \text { Physical Review A, 2004, 69, }\end{aligned}$
Asymptotic soliton train solutions of the defocusing nonlinear SchrÃ $\boldsymbol{\sigma}$ dinger equation. Physical
2.1
5 Theory of optical dispersive shock waves in photorefractive media. Physical Review A, 2007, 76, .
$2.5 \quad 77$
6 Biodiversity Can Help Prevent Malaria Outbreaks in Tropical Forests. PLoS Neglected Tropical Diseases,
2013, 7, e2139.
3.0
74
7 Model-based estimation of transmissibility and reinfection of SARS-CoV-2 P. 1 variant. Communications
7 Medicine, 2021, 1, .
$4.2 \quad 67$
$8 \quad$ Nonlinear short-wave propagation in ferrites. Physical Review E, 2000, 61, 976-979.
2.1

66

```
9 The modulational instability in deep water under the action of wind and dissipation. Journal of Fluid
9 Mechanics, 2010, 664, 138-149.
```

10 Array of Bose-Einstein condensates under time-periodic Feshbach-resonance management. Physical
Review A, 2003, 68, .
$2.5 \quad 52$
11 Solitons in Boseâ $\epsilon^{\text {"Einstein condensates trapped in a double-well potential. Physica D: Nonlinear }}$
Phenomena, 2004, 188, 213-240.
$2.8 \quad 49$

The Role of Immunity and Seasonality in Cholera Epidemics. Bulletin of Mathematical Biology, 2011, 73,
2916-2931.
1.9

46

Catastrophic Regime Shift in Water Reservoirs and SÃ£o Paulo Water Supply Crisis. PLoS ONE, 2015, 10,
2.5

45
e0138278.

The Kortewegâ€"de Vries hierarchy and long waterâ€waves. Journal of Mathematical Physics, 1995, 36,
307-320.
1.1

42

15 Lie symmetry analysis and reductions of a two-dimensional integrable generalization of the
15 Camassaâ€"Holm equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 273,
$2.1 \quad 38$
183-193.

16 Synchronization: Stability and duration time. Physical Review E, 2002, 65, 036225.
2.1

38

> Macroscopic quantum tunneling and resonances in coupled Boseâ€"Einstein condensates with
> oscillating atomic scattering length. Physics Letters, Section A: General, Atomic and Solid State
> Physics, 2000, 272, 395-401.
2.1

35

General, Atomic and Solid State Physics, 1999, 260, 218-224.
19
20

On certain new exact solutions of a diffusive predatorâ $\epsilon^{\prime \prime}$ prey system. Communications in Nonlinear
3.3

27 Science and Numerical Simulation, 2013, 18, 1269-1274.
1.5

SchrÃণdinger equations with distributed coefficients. European Physical Journal B, 2016, 89, 1.

Camassa-Holm equation: transformation to deformed sinh-Gordon equations, cuspon and soliton solutions. Journal of Physics A, 1999, 32, 4733-4747.
1.6

26

On the solutions of the position-dependent effective mass SchrÃَdinger equation of a nonlinear
23 oscillator related with the isotonic oscillator. Journal of Physics A: Mathematical and Theoretical,
$2.1 \quad 25$
2009, 42, 415303.
24 Resonances in a trapped 3D Boseâ€"Einstein condensate under periodically varying atomic scattering
length. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 3535-3550.
1.5

21
Nonlinear surface-wave excitations in the BÃ Onard-Marangoni system. Physical Review A, 1992, 46,
$4786-4790$.

PLoS ONE, 2013, 8, e66806.
$2.5 \quad 18$

27 Linearizability of the perturbed Burgers equation. Physical Review E, 1998, 58, 2526-2530.
$2.1 \quad 17$

28 Whitham method for the Benjamin-Ono-Burgers equation and dispersive shocks. Physical Review E,
2007, 75, 016307.
$2.1 \quad 17$
An integrable evolution equation for surface waves in deep water. Journal of Physics A: Mathematical
and Theoretical, 2014, 47, 025208.

30 Surface perturbations of a shallow viscous fluid heated from below and the ($2+1$)-dimensional
30 Burgers equation. Physical Review A, 1992, 45, 838-841.
$\begin{array}{lll}31 & \text { Soliton-cuspon interaction for the Camassa-Holm equation. Journal of Physics A, 1999, 32, 8665-8670. } & 1.6 \quad 15\end{array}$

32 Formation of soliton trains in Boseâ€"Einstein condensates as a nonlinear Fresnel diffraction of matter waves. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 319, 406-412.
$2.1 \quad 15$
33
34

> Optimal Boussinesq model for shallow-water waves interacting with a microstructure. Physical
> Review E, 2007, 76, 046311.
2.1

15

Wind-wave amplification mechanisms: possible models for steep wave events in finite depth. Natural
Hazards and Earth System Sciences, 2013, 13, 2805-2813.

[^0]1.0

14

46 Integrodifference model for blowfly invasion. Theoretical Ecology, 2012, 5, 363-371.
Amplification of matter rogue waves and breathers in quasi-two-dimensional Bose-Einstein
condensates. European Physical Journal B, 2016, 89, 1. $\quad 1.5$

Assessing the best time interval between doses in a two-dose vaccination regimen to reduce the

50	3.2
number of deaths in an ongoing epidemic of SARS-CoV-2. PLoS Computational Biology, 2022, 18,	10

51 Surface solitary waves in a double diffusive system. Physica Scripta, 1992, 45, 289-291. 9

```
55 On asymptotic solutions of integrable wave equations. Physics Letters, Section A: General, Atomic and
Solid State Physics, 2001, 287, 223-232.
```

How population loss through habitat boundaries determines the dynamics of a predatorâ€"prey system. Ecological Complexity, 2014, 20, 33-42.

Symmetry analysis of an integrable reactionâ€"diffusion equation. Chaos, Solitons and Fractals, 2001, 12, 463-474.

Theory of small aspect ratio waves in deep water. Physica D: Nonlinear Phenomena, 2005, 211, 377-390.
2.8

Population persistence in weakly-coupled sinks. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 142-146.

Brazil in the face of new SARS-CoV-2 variants: emergencies and challenges in public health. Revista
Brasileira De Epidemiologia, 2021, 24, e210022.

61 On exterior variational calculus. Journal of Physics A, 1988, 21, 1329-1339.

62 Stochastic Skellam model. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 60-66.

Spatialâe"temporal pattern of cutaneous leishmaniasis in Brazil. Infectious Diseases of Poverty, 2021, 10,
63
86.

64 Perturbative coherence in field theory. Journal of Mathematical Physics, 1989, 30, 1866-1870.
1.1

5

65 Vortices in nonlocal Grossâ€"Pitaevskii equation. Journal of Physics A, 2004, 37, 6633-6651.

Integrable NLS equation with time-dependent nonlinear coefficient and self-similar attractive BEC.
Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 86-92.

Lie point symmetries and the time-independent integral of the damped harmonic oscillator. Physica Scripta, 2011, 83, 055005.

Do I Know You? How Individual Recognition Affects Group Formation and Structure. PLoS ONE, 2017, 12, e0170737.

Dissipative Boussinesq system of equations in the BÃ@nard-Marangoni phenomenon. Physical Review E, 1994, 49, 1759-1762.

Long-wave and short-wave asymptotics in nonlinear dispersive systems. Physical Review E, 1999, 60, 2418-2420.

Short-wave instabilities in the Benjamin-Bona-Mahoney-Peregrine equation: theory and numerics.
Inverse Problems, 2001, 17, 863-870.
2.0

4

Modified Korteweg-de Vries hierarchy with hodograph transformation: Camassaâ€"Holm and
74 Harryâ€"Dym hierarchies. Mathematics and Computers in Simulation, 2001, 55, 483-491.
4.43

3

75 An Exact Equation for the Free Surface of a Fluid in a Porous Medium. SIAM Journal on Applied
1.8

Mathematics, 2007, 67, 619-629.

A mathematical model for wave propagation in elastic tubes with inhomogeneities: Application to
$83 \quad \begin{aligned} & \text { Boseâ€"Einstein Condensates } \\ & \text { Physics, 2004, 134, 671-676. }\end{aligned}$ Boseâ $\epsilon^{" E}$ Einstein Condensates in 2D with Time-Periodic Scattering Length. Journal of Low Temperature
Physics, 2004, 134, 671-676.
1.4 2

Evolution equation for short surface waves on water of finite depth. Physica D: Nonlinear

[^0]: The reductive perturbation method and the Korteweg-de Vries hierarchy. Acta Applicandae
 Mathematicae, 1995, 39, 389-403.

