
Luc Pellerin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2881678/publications.pdf Version: 2024-02-01

LUC DELLEDIN

#	Article	IF	CITATIONS
1	Clozapine induces astrocyte-dependent FDG-PET hypometabolism. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2251-2264.	3.3	14
2	Neuroprotective Effect of Eco-Sustainably Extracted Grape Polyphenols in Neonatal Hypoxia-Ischemia. Nutrients, 2022, 14, 773.	1.7	6
3	Bisphenol S favors hepatic steatosis development via an upregulation of liver MCT1 expression and an impairment of the mitochondrial respiratory system. Journal of Cellular Physiology, 2022, 237, 3057-3068.	2.0	3
4	Neuroprotective role of lactate in rat neonatal hypoxia-ischemia. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 342-358.	2.4	52
5	Peculiar protrusions along tanycyte processes face diverse neural and nonneural cell types in the hypothalamic parenchyma. Journal of Comparative Neurology, 2021, 529, 553-575.	0.9	23
6	Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovascular Research, 2021, 117, 1188-1201.	1.8	59
7	Disrupted function of lactate transporter <scp>MCT1</scp> , but not <scp>MCT4</scp> , in Schwann cells affects the maintenance of motor endâ€plate innervation. Clia, 2021, 69, 124-136.	2.5	24
8	Lactate fluxes mediated by the monocarboxylate transporter-1 are key determinants of the metabolic activityÂof beige adipocytes. Journal of Biological Chemistry, 2021, 296, 100137.	1.6	22
9	Altered mRNA and Protein Expression of Monocarboxylate Transporter MCT1 in the Cerebral Cortex and Cerebellum of Prion Protein Knockout Mice. International Journal of Molecular Sciences, 2021, 22, 1566.	1.8	2
10	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	7.1	1,098
11	Inhibition of eIF5A hypusination reprogrammes metabolism and glucose handling in mouse kidney. Cell Death and Disease, 2021, 12, 283.	2.7	18
12	About the source and consequences of 18F-FDG brain PET hypometabolism in short and long COVID-19. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2674-2675.	3.3	9
13	The Hepatic Monocarboxylate Transporter 1 (MCT1) Contributes to the Regulation of Food Anticipation in Mice. Frontiers in Physiology, 2021, 12, 665476.	1.3	10
14	Neuroinflammatory Response to TNFα and IL1β Cytokines Is Accompanied by an Increase in Glycolysis in Human Astrocytes In Vitro. International Journal of Molecular Sciences, 2021, 22, 4065.	1.8	13
15	Astrocyte Biomarkers in Alzheimer Disease. Neurology, 2021, 96, .	1.5	70
16	Lactate transporters in the rat barrel cortex sustain whisker-dependent BOLD fMRI signal and behavioral performance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
17	Nutritional Impact on Metabolic Homeostasis and Brain Health. Frontiers in Neuroscience, 2021, 15, 767405.	1.4	14
18	The eukaryotic initiation factor 5A (eIF5A1), the molecule, mechanisms and recent insights into the pathophysiological roles. Cell and Bioscience, 2021, 11, 219.	2.1	13

#	Article	IF	CITATIONS
19	Urinary ketone body loss leads to degeneration of brain white matter in elderly SLC5A8-deficient mice. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1709-1723.	2.4	6
20	Neuronal and astroglial monocarboxylate transporters play key but distinct roles in hippocampus-dependent learning and memory formation. Progress in Neurobiology, 2020, 194, 101888.	2.8	41
21	Reducing monocarboxylate transporter MCT1 worsens experimental diabetic peripheral neuropathy. Experimental Neurology, 2020, 333, 113415.	2.0	11
22	Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metabolism, 2020, 31, 1136-1153.e7.	7.2	233
23	Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature, 2020, 583, 603-608.	13.7	169
24	Maternal alcoholism and neonatal hypoxia-ischemia: Neuroprotection by stilbenoid polyphenols. Brain Research, 2020, 1738, 146798.	1.1	15
25	Neuroprotective Effect of Maternal Resveratrol Supplementation in a Rat Model of Neonatal Hypoxia-Ischemia. Frontiers in Neuroscience, 2020, 14, 616824.	1.4	6
26	Effects of bisphenol S, a major substitute of bisphenol A, on neurobehavioral responses and cerebral monocarboxylate transporters expression in mice. Food and Chemical Toxicology, 2019, 132, 110670.	1.8	20
27	Tanycytes Regulate Lipid Homeostasis by Sensing Free Fatty Acids and Signaling to Key Hypothalamic Neuronal Populations via FGF21 Secretion. Cell Metabolism, 2019, 30, 833-844.e7.	7.2	57
28	Development of Efficient AAV2/DJ-Based Viral Vectors to Selectively Downregulate the Expression of Neuronal or Astrocytic Target Proteins in the Rat Central Nervous System. Frontiers in Molecular Neuroscience, 2019, 12, 201.	1.4	13
29	Maternal consumption of piceatannol: A nutritional neuroprotective strategy against hypoxia-ischemia in rat neonates. Brain Research, 2019, 1717, 86-94.	1.1	14
30	Cell-Type-Specific Gene Expression Profiling in Adult Mouse Brain Reveals Normal and Disease-State Signatures. Cell Reports, 2019, 26, 2477-2493.e9.	2.9	55
31	Astrocyte Biomarkers in Alzheimer's Disease. Trends in Molecular Medicine, 2019, 25, 77-95.	3.5	203
32	Neuroprotective effect of <scp>rL</scp> osac on supplementâ€deprived mouse cultured cortical neurons involves maintenance of monocarboxylate transporter <scp>MCT</scp> 2 protein levels. Journal of Neurochemistry, 2019, 148, 80-96.	2.1	13
33	Impact of MCT1 Haploinsufficiency on the Mouse Retina. Advances in Experimental Medicine and Biology, 2018, 1074, 375-380.	0.8	5
34	Cortical Bilateral Adaptations in Rats Submitted to Focal Cerebral Ischemia: Emphasis on Glial Metabolism. Molecular Neurobiology, 2018, 55, 2025-2041.	1.9	13
35	Current technical approaches to brain energy metabolism. Glia, 2018, 66, 1138-1159.	2.5	40
36	Neuroenergetics: Astrocytes Have a Sweet Spot for Glucose. Current Biology, 2018, 28, R1258-R1260.	1.8	16

#	Article	IF	CITATIONS
37	[18F]FDG PET signal is driven by astroglial glutamate transport. Nature Neuroscience, 2017, 20, 393-395.	7.1	232
38	Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: <i>in vivo</i> insights from MCT1 haploinsufficient mice. FASEB Journal, 2017, 31, 2562-2575.	0.2	21
39	AMPK activation caused by reduced liver lactate metabolism protects against hepatic steatosis in MCT1 haploinsufficient mice. Molecular Metabolism, 2017, 6, 1625-1633.	3.0	25
40	The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes. Cell Reports, 2017, 20, 2980-2991.	2.9	96
41	Hyperpalatable Diet and Physical Exercise Modulate the Expression of the Glial Monocarboxylate Transporters MCT1 and 4. Molecular Neurobiology, 2017, 54, 5807-5814.	1.9	10
42	A neuronal MCT2 knockdown in the rat somatosensory cortex reduces both the NMR lactate signal and the BOLD response during whisker stimulation. PLoS ONE, 2017, 12, e0174990.	1.1	42
43	Cerebral Ketone Body Oxidation Is Facilitated by a High Fat Diet Enriched with Advanced Glycation End Products in Normal and Diabetic Rats. Frontiers in Neuroscience, 2016, 10, 509.	1.4	4
44	E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11004-11009.	3.3	22
45	Astrocytes are key but indirect contributors to the development of the symptomatology and pathophysiology of Huntington's disease. Glia, 2016, 64, 1841-1856.	2.5	37
46	Hypothalamic sensing of ketone bodies after prolonged cerebral exposure leads to metabolic control dysregulation. Scientific Reports, 2016, 6, 34909.	1.6	18
47	Monocarboxylate transporters in the brain and in cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2481-2497.	1.9	291
48	β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes. Neurochemistry International, 2016, 93, 73-81.	1.9	36
49	Evidence for hypothalamic ketone body sensing: impact on food intake and peripheral metabolic responses in mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E103-E115.	1.8	33
50	Cell-specific modulation of monocarboxylate transporter expression contributes to the metabolic reprograming taking place following cerebral ischemia. Neuroscience, 2016, 317, 108-120.	1.1	35
51	Improvement of Neuroenergetics by Hypertonic Lactate Therapy in Patients with Traumatic Brain Injury Is Dependent on Baseline Cerebral Lactate/Pyruvate Ratio. Journal of Neurotrauma, 2016, 33, 681-687.	1.7	66
52	Neuroenergetic Response to Prolonged Cerebral Glucose Depletion after Severe Brain Injury and the Role of Lactate. Journal of Neurotrauma, 2015, 32, 1560-1566.	1.7	26
53	A Probable Dual Mode of Action for Both L- and D-Lactate Neuroprotection in Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1561-1569.	2.4	77
54	Distribution of Monocarboxylate Transporters in the Peripheral Nervous System Suggests Putative Roles in Lactate Shuttling and Myelination. Journal of Neuroscience, 2015, 35, 4151-4156.	1.7	60

#	Article	IF	CITATIONS
55	Monocarboxylate transporters: new players in body weight regulation. Obesity Reviews, 2015, 16, 55-66.	3.1	33
56	Long-Lasting Metabolic Imbalance Related to Obesity Alters Olfactory Tissue Homeostasis and Impairs Olfactory-Driven Behaviors. Chemical Senses, 2015, 40, 537-556.	1.1	34
57	Caveolin expression changes in the neurovascular unit after juvenile traumatic brain injury: Signs of blood–brain barrier healing?. Neuroscience, 2015, 285, 215-226.	1.1	51
58	Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush. Experimental Neurology, 2015, 263, 325-338.	2.0	71
59	Glutamate reduces glucose utilization while concomitantly enhancing AQP9 and MCT2 expression in cultured rat hippocampal neurons. Frontiers in Neuroscience, 2014, 8, 246.	1.4	8
60	Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxiaâ€inducible factorâ€1αâ€mediated transcriptional regulation. Glia, 2014, 62, 477-490.	2.5	67
61	Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions. Glia, 2014, 62, 1125-1141.	2.5	88
62	Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect. Frontiers in Physiology, 2014, 5, 522.	1.3	103
63	Effects of sodium arsenite on neurite outgrowth and glutamate AMPA receptor expression in mouse cortical neurons. NeuroToxicology, 2013, 37, 197-206.	1.4	36
64	Unraveling the complex metabolic nature of astrocytes. Frontiers in Cellular Neuroscience, 2013, 7, 179.	1.8	114
65	Resistance to Diet-Induced Obesity and Associated Metabolic Perturbations in Haploinsufficient Monocarboxylate Transporter 1 Mice. PLoS ONE, 2013, 8, e82505.	1.1	66
66	Determinants of Brain Cell Metabolic Phenotypes and Energy Substrate Utilization Unraveled with a Modeling Approach. PLoS Computational Biology, 2012, 8, e1002686.	1.5	20
67	Endothelial Cell-Derived Nitric Oxide Enhances Aerobic Glycolysis in Astrocytes via HIF-1Â-Mediated Target Gene Activation. Journal of Neuroscience, 2012, 32, 9727-9735.	1.7	88
68	Sweet Sixteen for ANLS. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1152-1166.	2.4	580
69	Alteration of glucose metabolism in cultured astrocytes after AQP9-small interference RNA application. Brain Research, 2012, 1473, 19-24.	1.1	26
70	Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 2012, 487, 443-448.	13.7	1,287
71	Rise in Plasma Lactate Concentrations with Psychosocial Stress: A Possible Sign of Cerebral Energy Demand. Obesity Facts, 2012, 5, 384-392.	1.6	25
72	Brain Energy Consumption Induced by Electrical Stimulation Promotes Systemic Glucose Uptake. Biological Psychiatry, 2011, 70, 690-695.	0.7	61

#	Article	IF	CITATIONS
73	Brain-derived neurotrophic factor enhances the hippocampal expression of key postsynaptic proteins in vivo including the monocarboxylate transporter MCT2. Neuroscience, 2011, 192, 155-163.	1.1	45
74	The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression. Metabolism: Clinical and Experimental, 2011, 60, 327-334.	1.5	71
75	Temporal changes in mRNA expression of the brain nutrient transporters in the lithium–pilocarpine model of epilepsy in the immature and adult rat. Neurobiology of Disease, 2011, 43, 588-597.	2.1	27
76	Nitric oxide induces the expression of the monocarboxylate transporter MCT4 in cultured astrocytes by a cGMPâ€independent transcriptional activation. Clia, 2011, 59, 1987-1995.	2.5	23
77	Insights into Neuronal Cell Metabolism Using NMR Spectroscopy: Uridyl Diphosphate <i>N</i> â€Acetylâ€Glucosamine as a Unique Metabolic Marker. Angewandte Chemie - International Edition, 2011, 50, 11672-11674.	7.2	6
78	Low plasma lactate concentration as a biomarker of an incompetent brain-pull: A risk factor for weight gain in type 2 diabetes patients. Psychoneuroendocrinology, 2010, 35, 1287-1293.	1.3	3
79	Glycogen Metabolism as a Marker of Astrocyte Differentiation. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 51-55.	2.4	26
80	Brain-Derived Neurotrophic Factor Enhances the Expression of the Monocarboxylate Transporter 2 through Translational Activation in Mouse Cultured Cortical Neurons. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 286-298.	2.4	52
81	Comment on Recent Modeling Studies of Astrocyte–Neuron Metabolic Interactions. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1982-1986.	2.4	70
82	Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity. Diabetes and Metabolism, 2010, 36, S59-S63.	1.4	65
83	Stimulation-Induced Increases of Astrocytic Oxidative Metabolism in Rats and Humans Investigated with 1- ¹¹ C-Acetate. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 44-56.	2.4	43
84	Enhanced Cerebral Expression of MCT1 and MCT2 in a Rat Ischemia Model Occurs in Activated Microglial Cells. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1273-1283.	2.4	88
85	Linking supply to demand: the neuronal monocarboxylate transporter MCT2 and the αâ€aminoâ€3â€hydroxylâ€5â€methylâ€4â€isoxazoleâ€propionic acid receptor GluR2/3 subunit are associated trafficking process. European Journal of Neuroscience, 2009, 29, 1951-1963.	in a. 20mr	non34
86	Regulation of the intracellular distribution, cell surface expression, and protein levels of AMPA receptor GluR2 subunits by the monocarboxylate transporter MCT2 in neuronal cells. Journal of Neurochemistry, 2009, 109, 1767-1778.	2.1	16
87	Monocarboxylate Transporters. , 2009, , 961-965.		5
88	Glial Energy Metabolism: Overview. , 2009, , 783-788.		1
89	Insulin and IGFâ€l enhance the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of the phosphoinositide 3â€kinase–Akt–mammalian target of rapamycin pathway. European Journal of Neuroscience, 2008, 27, 53-65.	1.2	52
90	Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2008, 452, 139-146.	1.4	211

#	Article	IF	CITATIONS
91	Basal and stimulated lactate fluxes in primary cultures of astrocytes are differentially controlled by distinct proteins. Journal of Neurochemistry, 2008, 107, 789-798.	2.1	22
92	Making sense of AMPA receptor trafficking by modeling molecular mechanisms of synaptic plasticity. Brain Research, 2008, 1207, 60-72.	1.1	14
93	Distribution of the monocarboxylate transporter MCT2 in human cerebral cortex: An immunohistochemical study. Brain Research, 2008, 1226, 61-69.	1.1	24
94	Differential energetic response of brain vs. skeletal muscle upon glycemic variations in healthy humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R12-R16.	0.9	36
95	Brain energetics (thought needs food). Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 701-705.	1.3	69
96	A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4188-4193.	3.3	80
97	Activation of Astrocytes by CNTF Induces Metabolic Plasticity and Increases Resistance to Metabolic Insults. Journal of Neuroscience, 2007, 27, 7094-7104.	1.7	103
98	Causes of obesity: Looking beyond the hypothalamus. Progress in Neurobiology, 2007, 81, 61-88.	2.8	78
99	Activityâ€dependent regulation of energy metabolism by astrocytes: An update. Glia, 2007, 55, 1251-1262.	2.5	696
100	341 NEUROPATHIC PAIN AND SPINAL GLIA: CHARACTERIZATION OF C-JUN N-TERMINAL KINASE (JNK) ACTIVATION IN ASTROCYTE CULTURES. European Journal of Pain, 2007, 11, S151-S152.	1.4	0
101	Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice. Journal of Physiology, 2007, 583, 469-486.	1.3	72
102	Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway. Journal of Neurochemistry, 2007, 102, 389-397.	2.1	48
103	Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase. BMC Neuroscience, 2007, 8, 35.	0.8	60
104	Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. European Journal of Neuroscience, 2006, 24, 1687-1694.	1.2	197
105	Metabolic Activation Pattern of Distinct Hippocampal Subregions during Spatial Learning and Memory Retrieval. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 468-477.	2.4	21
106	Expression of the monocarboxylate transporter MCT1 in the adult human brain cortex. Brain Research, 2006, 1070, 65-70.	1.1	57
107	How Astrocytes Feed Hungry Neurons. Molecular Neurobiology, 2005, 32, 059-072.	1.9	109
108	Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation. Proceedings of the United States of America, 2005, 102, 16448-16453.	3.3	169

#	Article	IF	CITATIONS
109	Ampakinetm CX546 bolsters energetic response of astrocytes: a novel target for cognitive-enhancing drugs acting as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor modulators. Journal of Neurochemistry, 2005, 92, 668-677.	2.1	20
110	Monocarboxylate transporters in the central nervous system: distribution, regulation and function. Journal of Neurochemistry, 2005, 94, 1-14.	2.1	543
111	Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. Journal of Neuroscience Research, 2005, 79, 55-64.	1.3	220
112	Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. Journal of Neuroscience Research, 2005, 81, 644-652.	1.3	195
113	Selective Postsynaptic Co-localization of MCT2 with AMPA Receptor GluR2/3 Subunits at Excitatory Synapses Exhibiting AMPA Receptor Trafficking. Cerebral Cortex, 2005, 15, 361-370.	1.6	103
114	Unusual astrocyte reactivity caused by the food mycotoxin ochratoxin A in aggregating rat brain cell cultures. Neuroscience, 2005, 134, 771-782.	1.1	46
115	Theoretical support for the astrocyte-neuron lactate shuttle hypothesis. I. Modeling neuronal and astrocytic NADH/NAD+ kinetics. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S72-S72.	2.4	0
116	Theoretical support for the astrocyte-neuron lactate shuttle hypothesis. II. Modeling brain lactate kinetics. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S90-S90.	2.4	0
117	Ampakine CX546 bolsters energetic response of astrocytes: A novel target for cognitive-enhancing drugs acting as AMPA receptor modulators. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S70-S70.	2.4	0
118	Effects of pro-inflammatory cytokines and beta-amyloid peptide on glucose metabolism in primary cultures of astrocytes. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S74-S74.	2.4	0
119	The central role of astrocytes in neurometabolic coupling: A decade's perspective. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S71-S71.	2.4	0
120	Glucocorticoids modulate neurotransmitterâ€induced glycogen metabolism in cultured cortical astrocytes. Journal of Neurochemistry, 2004, 88, 900-908.	2.1	69
121	Dual-Gene, Dual-Cell Type Therapy against an Excitotoxic Insult by Bolstering Neuroenergetics. Journal of Neuroscience, 2004, 24, 6202-6208.	1.7	58
122	Empiricism and Rationalism: Two Paths toward the Same Goal. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 1240-1241.	2.4	8
123	Quantitative RT-PCR Analysis of Uncoupling Protein Isoforms in Mouse Brain Cortex: Methodological Optimization and Comparison of Expression with Brown Adipose Tissue and Skeletal Muscle. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 780-788.	2.4	58
124	Immunocytochemical expression of monocarboxylate transporters in the human visual cortex at midgestation. Developmental Brain Research, 2004, 148, 69-76.	2.1	14
125	Early acquisition of typical metabolic features upon differentiation of mouse neural stem cells into astrocytes. Glia, 2004, 46, 8-17.	2.5	49
126	The selfish brain: competition for energy resources. Neuroscience and Biobehavioral Reviews, 2004, 28, 143-180.	2.9	404

#	Article	IF	CITATIONS
127	Neuroenergetics: Calling Upon Astrocytes to Satisfy Hungry Neurons. Neuroscientist, 2004, 10, 53-62.	2.6	230
128	NEUROSCIENCE: Let There Be (NADH) Light. Science, 2004, 305, 50-52.	6.0	97
129	The Central Role of Astrocytes in Neuroenergetics. , 2004, , 367-376.		2
130	Perfusion Tracers: Biological Bases and Clinical Implications. , 2004, , 33-44.		1
131	Perinatal and early postnatal changes in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain. Journal of Comparative Neurology, 2003, 465, 445-454.	0.9	39
132	Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures. Journal of Neuroscience Research, 2003, 73, 141-155.	1.3	124
133	Noradrenaline enhances monocarboxylate transporter 2 expression in cultured mouse cortical neurons via a translational regulation. Journal of Neurochemistry, 2003, 86, 1468-1476.	2.1	52
134	Fast food delivery: the response of nursing astrocytes to an exciting call from neurons. Journal of Neurochemistry, 2003, 85, 9-9.	2.1	0
135	Lactate is a Preferential Oxidative Energy Substrate over Glucose for Neurons in Culture. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1298-1306.	2.4	274
136	Food for Thought: Challenging the Dogmas. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1282-1286.	2.4	169
137	How to balance the brain energy budget while spending glucose differently. Journal of Physiology, 2003, 546, 325-325.	1.3	69
138	Cryopreservation of human brain tissue allowing timely production of viable adult human brain cells for autologous transplantation. Cryobiology, 2003, 47, 179-183.	0.3	18
139	Lactate as a pivotal element in neuron–glia metabolic cooperation. Neurochemistry International, 2003, 43, 331-338.	1.9	200
140	Glial Glutamate Transporters Mediate a Functional Metabolic Crosstalk between Neurons and Astrocytes in the Mouse Developing Cortex. Neuron, 2003, 37, 275-286.	3.8	259
141	GABA uptake into astrocytes is not associated with significant metabolic cost: Implications for brain imaging of inhibitory transmission. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12456-12461.	3.3	165
142	Developmental and Hormonal Regulation of the Monocarboxylate Transporter 2 (MCT2) Expression in the Mouse Germ Cells1. Biology of Reproduction, 2003, 69, 1069-1078.	1.2	46
143	A _{2B} receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression. American Journal of Physiology - Cell Physiology, 2003, 284, C696-C704.	2.1	57
144	Similar Perisynaptic Glial Localization for the Na+,K+-ATPase alpha2 Subunit and the Glutamate Transporters GLAST and GLT-1 in the Rat Somatosensory Cortex. Cerebral Cortex, 2002, 12, 515-525.	1.6	165

#	Article	IF	CITATIONS
145	Does glutamate image your thoughts?. Trends in Neurosciences, 2002, 25, 359-364.	4.2	109
146	Role of astrocytes in coupling synaptic activity to glucose utilization. International Congress Series, 2002, 1235, 189-196.	0.2	1
147	Feeding active neurons: (re)emergence of a nursing role for astrocytes. Journal of Physiology (Paris), 2002, 96, 273-282.	2.1	80
148	Long-term modulation of glucose utilization by IL-1α and TNF-α in astrocytes: Na+pump activity as a potential target via distinct signaling mechanisms. Glia, 2002, 39, 10-18.	2.5	31
149	MCT2 is a Major Neuronal Monocarboxylate Transporter in the Adult Mouse Brain. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 586-595.	2.4	171
150	A Novel Method for In Vitro Production of Human Glial-Like Cells from Neurosurgical Resection Tissue. Laboratory Investigation, 2002, 82, 809-812.	1.7	23
151	Brain energy metabolism in Alzheimer's disease: 99mTc-HMPAO SPECT imaging during verbal fluency and role of astrocytes in the cellular mechanism of 99mTc-HMPAO retention. Brain Research Reviews, 2001, 36, 230-240.	9.1	26
152	Local Injection of Antisense Oligonucleotides Targeted to the Glial Glutamate Transporter GLAST Decreases the Metabolic Response to Somatosensory Activation. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 404-412.	2.4	80
153	Astrocytes as a Predominant Cellular Site of 99mTc-HMPAO Retention. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 456-468.	2.4	24
154	Brain Energy Metabolism: Cellular Aspects and Relevance to Functional Brain Imaging. , 2001, , 203-209.		0
155	Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes. , 2000, 30, 382-391.		79
156	The astrocyte-mediated coupling between synaptic activity and energy metabolism operates through volume transmission. Progress in Brain Research, 2000, 125, 229-240.	0.9	24
157	Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience, 2000, 100, 617-627.	1.1	207
158	Differential messenger RNA distribution of lactate dehydrogenase LDH-1 and LDH-5 isoforms in the rat brain. Neuroscience, 2000, 96, 619-625.	1.1	67
159	Regulation of Cerebral Energy Metabolism. Medical Radiology, 2000, , 25-34.	0.0	1
160	Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes. Glia, 2000, 30, 382-91.	2.5	26
161	Astrocytes Couple Synaptic Activity to Glucose Utilization in the Brain. Physiology, 1999, 14, 177-182.	1.6	114
162	Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1155-1163.	1.8	644

#	Article	IF	CITATIONS
163	Focal cerebral ischaemia induces a decrease in activity and a shift in ouabain affinity of Na+, K+-ATPase isoforms without modifications in mRNA and protein expression. Brain Research, 1999, 819, 132-142.	1.1	19
164	Trans-inhibition of glutamate transport prevents excitatory amino acid-induced glycolysis in astrocytes. Brain Research, 1999, 850, 39-46.	1.1	37
165	NEUROSCIENCE:Energy on Demand. Science, 1999, 283, 496-497.	6.0	1,090
166	Deep Hypothermia and Rewarming Alters Glutamate Levels and Glycogen Content in Cultured AstrocytesÂ. Anesthesiology, 1999, 91, 1763-1763.	1.3	22
167	Mécanismes cellulaires du métabolisme énergétique cérébral : implications pour l'imagerie fonctionnelle Medecine/Sciences, 1999, 15, 451.	0.0	1
168	Evidence Supporting the Existence of an Activity-Dependent Astrocyte-Neuron Lactate Shuttle. Developmental Neuroscience, 1998, 20, 291-299.	1.0	610
169	Expression of monocarboxylate transporter mRNAs in mouse brain: Support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3990-3995.	3.3	264
170	Comparison of Lactate Transport in Astroglial Cells and Monocarboxylate Transporter 1 (MCT 1) Expressing Xenopus laevis Oocytes. Journal of Biological Chemistry, 1997, 272, 30096-30102.	1.6	320
171	Regulation of energy metabolism by neurotransmitters in astrocytes in primary culture and in an immortalized cell line. , 1997, 21, 74-83.		69
172	βâ€Adrenergic Stimulation Promotes Homocysteic Acid Release from Astrocyte Cultures: Evidence for a Role of Astrocytes in the Modulation of Synaptic Transmission. Journal of Neurochemistry, 1997, 68, 2386-2394.	2.1	49
173	Glutamate Uptake Stimulates Na ⁺ ,K ⁺ â€ATPase Activity in Astrocytes via Activation of a Distinct Subunit Highly Sensitive to Ouabain. Journal of Neurochemistry, 1997, 69, 2132-2137.	2.1	190
174	Regulation by Neurotransmitters of Glial Energy Metabolism. Advances in Experimental Medicine and Biology, 1997, 429, 137-143.	0.8	14
175	Metabolic Coupling during Activation. Advances in Experimental Medicine and Biology, 1997, 413, 161-166.	0.8	56
176	Role of Neuron-Glia Interactions in Coupling Neuronal Activity to Energy Metabolism. , 1997, , 555-560.		0
177	Role of Neuron-Glia Interactions in Brain Energy Metabolism: Implications for Neurodegenerative Disorders. , 1997, , 113-118.		1
178	Cellular Mechanisms of Brain Energy Metabolism. Relevance to Functional Brain Imaging and to Neurodegenerative Disordersa. Annals of the New York Academy of Sciences, 1996, 777, 380-387.	1.8	142
179	Cellular Bases of Brain Energy Metabolism and Their Relevance to Functional Brain Imaging: Evidence for a Prominent Role of Astrocytes. Cerebral Cortex, 1996, 6, 50-61.	1.6	212
180	Excitatory Amino Acids Stimulate Aerobic Glycolysis in Astrocytes via an Activation of the Na ⁺ /K ⁺ ATPase. Developmental Neuroscience, 1996, 18, 336-342.	1.0	110

#	Article	IF	CITATIONS
181	Selective Distribution of Lactate Dehydrogenase Isoenzymes in Neurons and Astrocytes of Human Brain. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 1079-1089.	2.4	351
182	The contribution of astrocytes to the 18F-2-deoxyglucose signal in PET activation studies. Molecular Psychiatry, 1996, 1, 445-52.	4.1	58
183	Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical neurons: involvement of a pH-sensitive membrane phospholipase A2. Journal of Neuroscience, 1995, 15, 3307-3317.	1.7	82
184	Adenosine triphosphate and arachidonic acid stimulate glycogenolysis in primary cultures of mouse cerebral cortical astrocytes. Neuroscience Letters, 1995, 188, 109-112.	1.0	42
185	Regulation of Astrocyte Energy Metabolism by Neurotransmitters. Kidney and Blood Pressure Research, 1994, 17, 168-171.	0.9	19
186	Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10625-10629.	3.3	2,402
187	Neurotransmitters Regulate Energy Metabolism in Astrocytes: Implications for the Metabolic Trafficking between Neural Cells. Developmental Neuroscience, 1993, 15, 306-312.	1.0	185
188	Arachidonic acid augments potassium currents in rat neocortical neurones. NeuroReport, 1993, 4, 359-362.	0.6	22
189	Release of arachidonic acid by NMDA-receptor activation in the rat hippocampus. Neurochemical Research, 1991, 16, 983-989.	1.6	72
190	A protein assay program for Lotus 1-2-3. Computers in Biology and Medicine, 1990, 20, 373-378.	3.9	1
191	Long-term changes of synaptic transmission induced by arachidonic acid in the CA1 subfield of the rat hippocampus. Neuroscience Letters, 1990, 115, 286-292.	1.0	60
192	Formation of 12-lipoxygenase metabolites in rat cerebral cortical slices: stimulation by calcium ionophore, glutamate and N-methyl-D-aspartate. , 1990, 29, 29-37.		6
193	Metabolism of Prostaglandin D2by Human Cerebral Cortex into 9?, 11?-Prostaglandin F2by an Active NADPH-Dependent 11-Ketoreductase. Journal of Neurochemistry, 1989, 53, 64-70.	2.1	15
194	Arachidonic Acid Metabolites in the Rat and Human Brain New Findings on the Metabolism of Prostaglandin D2and Lipoxygenase Products. Annals of the New York Academy of Sciences, 1989, 559, 74-83.	1.8	24
195	Editorial: Lactate as a Major Signaling Molecule for Homeostasis. Frontiers in Physiology, 0, 13, .	1.3	4