Isabel W C E Arends

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2881321/publications.pdf Version: 2024-02-01

		17440	15732
177	17,517	63	125
papers	citations	h-index	g-index
231	231	231	14146
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Green, Catalytic Oxidation of Alcohols in Water. Science, 2000, 287, 1636-1639.	12.6	1,109
2	Green, Catalytic Oxidations of Alcohols. Accounts of Chemical Research, 2002, 35, 774-781.	15.6	1,092
3	Heterogeneous Catalysts for Liquid-Phase Oxidations:  Philosophers' Stones or Trojan Horses?. Accounts of Chemical Research, 1998, 31, 485-493.	15.6	922
4	Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology?. Plant Physiology, 2011, 156, 1701-1705.	4.8	887
5	The Baeyerâ^'Villiger Reaction:  New Developments toward Greener Procedures. Chemical Reviews, 2004, 104, 4105-4124.	47.7	628
6	Efficient and Selective Aerobic Oxidation of Alcohols into Aldehydes and Ketones Using Ruthenium/TEMPO as the Catalytic System. Journal of the American Chemical Society, 2001, 123, 6826-6833.	13.7	500
7	Copper(ii)-catalysed aerobic oxidation of primary alcohols to aldehydes. Chemical Communications, 2003, , 2414.	4.1	458
8	Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A: General, 2001, 212, 175-187.	4.3	410
9	Enzyme-mediated oxidations for the chemist. Green Chemistry, 2011, 13, 226-265.	9.0	395
10	The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. Journal of Analytical and Applied Pyrolysis, 2000, 54, 153-192.	5.5	373
11	Oxidative Transformations of Organic Compounds Mediated by Redox Molecular Sieves. Angewandte Chemie International Edition in English, 1997, 36, 1144-1163.	4.4	363
12	Enzymatic reductions for the chemist. Green Chemistry, 2011, 13, 2285.	9.0	332
13	Room Temperature Aerobic Copper–Catalysed Selective Oxidation of Primary Alcohols to Aldehydes. Advanced Synthesis and Catalysis, 2004, 346, 805-811.	4.3	331
14	Biocatalytic Redox Reactions for Organic Synthesis: Nonconventional Regeneration Methods. ChemCatChem, 2010, 2, 762-782.	3.7	235
15	Catalytic oxidations mediated by metal ions and nitroxyl radicals. Journal of Molecular Catalysis A, 2006, 251, 200-214.	4.8	226
16	Preparation, Characterization, and Performance of FeZSM-5 for the Selective Oxidation of Benzene to Phenol with N2O. Journal of Catalysis, 2000, 195, 287-297.	6.2	211
17	Catalytic Conversions in Water. Part 21: Mechanistic Investigations on the Palladium-Catalysed Aerobic Oxidation of Alcohols in Waterâ€. Advanced Synthesis and Catalysis, 2002, 344, 355-369.	4.3	205
18	Physicochemical Characterization of Isomorphously Substituted FeZSM-5 during Activation. Journal of Catalysis, 2002, 207, 113-126.	6.2	197

#	Article	IF	CITATIONS
19	Cu(ii)-nitroxyl radicals as catalytic galactose oxidase mimics. Organic and Biomolecular Chemistry, 2003, 1, 3232.	2.8	192
20	Enzyme Initiated Radical Polymerizations. Polymers, 2012, 4, 759-793.	4.5	185
21	Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 142-148.	1.8	178
22	Liquid phase oxidation at metal ions and complexes in constrained environments. Catalysis Today, 1998, 41, 387-407.	4.4	172
23	Selenium-Catalyzed Oxidations with Aqueous Hydrogen Peroxide. 2. Baeyerâ^'Villiger Reactions in Homogeneous Solution1. Journal of Organic Chemistry, 2001, 66, 2429-2433.	3.2	165
24	Mimicking Nature: Synthetic Nicotinamide Cofactors for Câ•C Bioreduction Using Enoate Reductases. Organic Letters, 2013, 15, 180-183.	4.6	155
25	Recent Developments in Selective Catalytic Epoxidations with H2O2. Topics in Catalysis, 2002, 19, 133-141.	2.8	145
26	Efficient ruthenium–TEMPO-catalysed aerobic oxidation of aliphatic alcohols into aldehydes and ketones. Chemical Communications, 1999, , 1591-1592.	4.1	143
27	Selfâ€Assembly of a Heteropolyoxopalladate Nanocube: [Pd ^{II} ₁₃ As ^V ₈ O ₃₄ (OH) ₆] ^{8â^ Angewandte Chemie - International Edition, 2008, 47, 9542-9546.}	5818 .	140
28	Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications, 2014, 5, 3145.	12.8	135
29	A Mechanistic Probe for Oxygen Activation by Metal Complexes and Hydroperoxides and Its Application to Alkane Functionalization by [FeIIICl2tris(2-pyridinylmethyl)amine]+ BF4 Journal of the American Chemical Society, 1995, 117, 4710-4711.	13.7	134
30	ls Simpler Better? Synthetic Nicotinamide Cofactor Analogues for Redox Chemistry. ACS Catalysis, 2014, 4, 788-797.	11.2	127
31	Specific Photobiocatalytic Oxyfunctionalization Reactions. Angewandte Chemie - International Edition, 2011, 50, 10716-10719.	13.8	124
32	Comparison of TEMPO and its derivatives as mediators in laccase catalysed oxidation of alcohols. Tetrahedron, 2006, 62, 6659-6665.	1.9	120
33	Polymer immobilised TEMPO (PIPO): an efficient catalyst for the chlorinated hydrocarbon solvent-free and bromide-free oxidation of alcohols with hypochlorite. Chemical Communications, 2000, , 271-272.	4.1	117
34	Visible light-driven and chloroperoxidase-catalyzed oxygenation reactions. Chemical Communications, 2009, , 6848.	4.1	115
35	Enzyme engineering for enantioselectivity: from trial-and-error to rational design?. Trends in Biotechnology, 2010, 28, 46-54.	9.3	115
36	Biocatalytic and biomimetic oxidations with vanadium. Journal of Inorganic Biochemistry, 2000, 80, 81-89.	3.5	113

3

#	Article	IF	CITATIONS
37	Catalytic Conversions in Water. Part 22: Electronic Effects in the (Diimine)palladium(II)-Catalysed Aerobic Oxidation of Alcohols. Advanced Synthesis and Catalysis, 2003, 345, 497-505.	4.3	101
38	The taming of oxygen: biocatalytic oxyfunctionalisations. Chemical Communications, 2014, 50, 13180-13200.	4.1	99
39	Epoxidation and Baeyer–Villiger oxidation using hydrogen peroxide and a lipase dissolved in ionic liquids. Green Chemistry, 2011, 13, 2154.	9.0	98
40	Selenium catalysed oxidations with aqueous hydrogen peroxide. Part I: epoxidation reactions in homogeneous solution. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 224-228.	1.3	96
41	On the nature of mutual inactivation between [Cp*Rh(bpy)(H2O)]2+ and enzymes – analysis and potential remedies. Journal of Molecular Catalysis B: Enzymatic, 2010, 63, 149-156.	1.8	96
42	Kinetic study of the thermolysis of anisole in a hydrogen atmosphere. The Journal of Physical Chemistry, 1993, 97, 7914-7925.	2.9	94
43	Catalytic Conversions in Water. Part 23: Steric Effects and Increased Substrate Scope in the Palladium-Neocuproine Catalyzed Aerobic Oxidation of Alcohols in Aqueous Solvents#. Advanced Synthesis and Catalysis, 2003, 345, 1341-1352.	4.3	94
44	5-Hydroxymethylfurfural Synthesis from Hexoses Is Autocatalytic. ACS Catalysis, 2013, 3, 760-763.	11.2	90
45	Efficient ruthenium-catalyzed racemization of secondary alcohols: application to dynamic kinetic resolution. Tetrahedron: Asymmetry, 2002, 13, 879-884.	1.8	89
46	Catalytic conversions in water. Part 10.†Aerobic oxidation of terminal olefins to methyl ketones catalysed by water soluble palladium complexes. Chemical Communications, 1998, , 2359-2360.	4.1	88
47	Selenium catalysed oxidations with aqueous hydrogen peroxide. Part 3: Oxidation of carbonyl compounds under mono/bi/triphasic conditions. Tetrahedron, 2002, 58, 3977-3983.	1.9	88
48	Noncovalent Anchoring of Asymmetric Hydrogenation Catalysts on a New Mesoporous Aluminosilicate: Application and Solvent Effects. Chemistry - A European Journal, 2004, 10, 5829-5835.	3.3	87
49	Photoenzymatic Reduction of Cĩ£¾C Double Bonds. Advanced Synthesis and Catalysis, 2009, 351, 3279-3286.	4.3	80
50	Pd nanoparticles as catalysts for green and sustainable oxidation of functionalized alcohols in aqueous media. Tetrahedron, 2010, 66, 1040-1044.	1.9	78
51	Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review. Beilstein Journal of Organic Chemistry, 2018, 14, 470-483.	2.2	78
52	Mechanism of Laccase–TEMPO atalyzed Oxidation of Benzyl Alcohol. ChemCatChem, 2010, 2, 827-833.	3.7	77
53	Rate Constants for Termination and TEMPO Trapping of Some Resonance Stabilized Hydroaromatic Radicals in the Liquid Phase. The Journal of Physical Chemistry, 1995, 99, 8182-8189.	2.9	74
54	Enantioselective Oxidation of Aldehydes Catalyzed by Alcohol Dehydrogenase. Angewandte Chemie - International Edition, 2012, 51, 9914-9917.	13.8	74

#	Article	IF	CITATIONS
55	Selective catalytic oxidation of cyclohexylbenzene to cyclohexylbenzene-1-hydroperoxide: a coproduct-free route to phenol. Tetrahedron, 2002, 58, 9055-9061.	1.9	72
56	Towards catalytic cascade reactions: asymmetric synthesis using combined chemo-enzymatic catalysts. Topics in Catalysis, 2006, 40, 35-44.	2.8	72
57	Access to Lactone Building Blocks via Horse Liver Alcohol Dehydrogenase-Catalyzed Oxidative Lactonization. ACS Catalysis, 2013, 3, 2436-2439.	11.2	71
58	Palladium-neocuproine catalyzed aerobic oxidation of alcohols in aqueous solvents. Journal of Molecular Catalysis A, 2006, 251, 246-254.	4.8	70
59	Alumina: a cheap, active and selective catalyst for epoxidations with (aqueous) hydrogen peroxide. Green Chemistry, 2001, 3, 243-246.	9.0	68
60	A New Regeneration System for Oxidized Nicotinamide Cofactors. Advanced Synthesis and Catalysis, 2009, 351, 1211-1216.	4.3	67
61	Metal-Catalyzed Asymmetric Epoxidations of Terminal Olefins Using Hydrogen Peroxide as the Oxidant. Angewandte Chemie - International Edition, 2006, 45, 6250-6252.	13.8	65
62	A biocatalytic hydrogenation of carboxylic acids. Chemical Communications, 2012, 48, 12056.	4.1	65
63	Self-assembly of star-shaped heteropoly-15-palladate(II). Dalton Transactions, 2009, , 9385.	3.3	64
64	Cascading g-C ₃ N ₄ and Peroxygenases for Selective Oxyfunctionalization Reactions. ACS Catalysis, 2019, 9, 7409-7417.	11.2	64
65	A Comparison of the Activity of Polymer Immobilised TEMPO (PIPO) with MCM-41 and Silica Supported TEMPO as Heterogeneous Catalysts for the Oxidation of Alcohols. Synlett, 2001, 2001, 0102-0104.	1.8	62
66	Expanding the Spectrum of Light-Driven Peroxygenase Reactions. ACS Catalysis, 2019, 9, 890-894.	11.2	62
67	Magnetic force microscopy. Biomatter, 2014, 4, e29507.	2.6	61
68	Methyltrioxorhenium-catalysed epoxidation of alkenes in trifluoroethanol. Chemical Communications, 1999, , 821-822.	4.1	60
69	Selective Photooxidation Reactions using Waterâ€Soluble Anthraquinone Photocatalysts. ChemCatChem, 2017, 9, 3821-3826.	3.7	59
70	Carbonâ~'Oxygen Bond Strength in Diphenyl Ether and Phenyl Vinyl Ether:Â An Experimental and Computational Study. Journal of Physical Chemistry A, 1997, 101, 5404-5411.	2.5	58
71	More efficient redox biocatalysis by utilising 1,4-butanediol as a â€~̃smart cosubstrate'. Green Chemistry, 2013, 15, 330.	9.0	56
72	Vanadium-catalyzed, microwave-assisted oxidations with H2O2 in ionic liquids. Pure and Applied Chemistry, 2009, 81, 1265-1277.	1.9	54

#	Article	IF	CITATIONS
73	Glycerol-based solvents as green reaction media in epoxidations with hydrogen peroxide catalysed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide. Green Chemistry, 2009, 11, 1605.	9.0	54
74	A Photoenzymatic System for Alcohol Oxidation. ChemCatChem, 2011, 3, 338-342.	3.7	53
75	Ferritin-supported palladium nanoclusters: selective catalysts for aerobic oxidations in water. Chemical Communications, 2012, 48, 5745.	4.1	53
76	Fluorinated Alcohols: Effective Solvents for Uncatalysed Epoxidations with Aqueous Hydrogen Peroxide. Synlett, 2001, 2001, 0248-0250.	1.8	51
77	Catalytic conversions in water. Applied Catalysis A: General, 2000, 194-195, 435-442.	4.3	50
78	A biocatalytic redox isomerisation. Chemical Communications, 2012, 48, 6630.	4.1	49
79	Chiral catalysts confined in porous hosts. Journal of Catalysis, 2003, 217, 264-274.	6.2	47
80	Perfluoroheptadecan-9-one: a selective and reusable catalyst for epoxidations with hydrogen peroxide. Chemical Communications, 1999, , 263-264.	4.1	45
81	Stabilities and rates in the laccase/TEMPO-catalyzed oxidation of alcohols. Biocatalysis and Biotransformation, 2006, 24, 443-448.	2.0	45
82	Bioreductions Catalyzed by an Alcohol Dehydrogenase in Nonâ€aqueous Media. ChemCatChem, 2014, 6, 973-976.	3.7	45
83	Diphenyldiselenide-Catalyzed Selective Oxidation of Activated Alcohols with <i>tert</i> -Butyl Hydroperoxide: New Mechanistic Insights. Journal of Organic Chemistry, 2009, 74, 3085-3089.	3.2	44
84	Photobiocatalytic alcohol oxidation using LED light sources. Green Chemistry, 2017, 19, 376-379.	9.0	44
85	Selective Ruthenium-Catalyzed Oxidation of 1,2:4,5-Di-O-isopropylidene- β-d-fructopyranose and Other Alcohols with NaOCl. Organic Letters, 2002, 4, 1659-1661.	4.6	42
86	Efficient immobilisation of Rh-MonoPhos on the aluminosilicate AlTUD-1. Chemical Communications, 2004, , 2830.	4.1	42
87	Increasing the Productivity of Peroxidaseâ€Catalyzed Oxyfunctionalization: A Case Study on the Potential of Twoâ€Liquidâ€Phase Systems. ChemCatChem, 2013, 5, 565-568.	3.7	42
88	Title is missing!. Topics in Catalysis, 2000, 13, 259-265.	2.8	40
89	Following the evolution of iron from framework to extra-framework positions in isomorphously substituted [Fe,Al]MFI with Fe M�ssbauer spectroscopy. Journal of Catalysis, 2005, 231, 56-66.	6.2	40
90	Comparison of supports for the electrostatic immobilisation of asymmetric homogeneous catalysts. Journal of Catalysis, 2006, 239, 212-219.	6.2	40

#	Article	IF	CITATIONS
91	Enhancement of the Substrate Scope of Transketolase. ChemBioChem, 2012, 13, 1921-1931.	2.6	40
92	Tertiary arsine oxides: active and selective catalysts for epoxidation with hydrogen peroxide. Tetrahedron Letters, 1999, 40, 5239-5242.	1.4	39
93	Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors. Organic and Biomolecular Chemistry, 2009, 7, 4604.	2.8	39
94	Peroxygenase atalysed Epoxidation of Styrene Derivatives in Neat Reaction Media. ChemCatChem, 2019, 11, 4519-4523.	3.7	38
95	Expanding the Scope of Laccaseâ€Mediator Systems. ChemCatChem, 2013, 5, 3027-3032.	3.7	37
96	New Cofactorâ€Independent Hydration Biocatalysts: Structural, Biochemical, and Biocatalytic Characteristics of Carotenoid and Oleate Hydratases. ChemCatChem, 2015, 7, 29-37.	3.7	37
97	The Effect of pH Control on the Selective Ruthenium-Catalyzed Oxidation of Ethers and Alcohols with Sodium Hypochlorite. Advanced Synthesis and Catalysis, 2003, 345, 1321-1328.	4.3	35
98	Vanadate substituted phytase: Immobilization, structural characterization and performance for sulfoxidations. Journal of Inorganic Biochemistry, 2008, 102, 318-329.	3.5	35
99	A hydrogel-based enzyme-loaded polymersome reactor. Nanoscale, 2010, 2, 709.	5.6	34
100	Biocatalytic synthesis of the Green Note <i>trans</i> -2-hexenal in a continuous-flow microreactor. Beilstein Journal of Organic Chemistry, 2018, 14, 697-703.	2.2	34
101	Chemoenzymatic Reduction of Conjugated CC Double Bonds. ChemCatChem, 2012, 4, 196-199.	3.7	33
102	A Photoenzymatic NADH Regeneration System. ChemBioChem, 2018, 19, 2344-2347.	2.6	33
103	NAD ⁺ â€Dependent Enzymatic Route for the Epimerization of Hydroxysteroids. ChemSusChem, 2019, 12, 3192-3203.	6.8	32
104	Green oxidation of alcohols using biomimetic Cu complexes and Cu enzymes as catalysts. Advances in Inorganic Chemistry, 2006, , 235-279.	1.0	31
105	Electrochemical characterization of iron sites in ex-framework FeZSM-5. Journal of Electroanalytical Chemistry, 2002, 519, 72-84.	3.8	28
106	Chiral catalysts confined in porous hosts. Journal of Catalysis, 2003, 217, 275-283.	6.2	28
107	Remarkable N2 affinity of a steam-activated FeZSM-5 catalyst: a 57Fe Mössbauer study. Journal of Catalysis, 2004, 223, 262-270.	6.2	28
108	Activities and Stabilities of Redox Molecular Sieve Catalysts in Liquid Phase Oxidations. A Review. Collection of Czechoslovak Chemical Communications, 1998, 63, 1724-1742.	1.0	27

#	Article	IF	CITATIONS
109	Towards Recyclable NAD(P)H Regeneration Catalysts. Molecules, 2012, 17, 9835-9841.	3.8	27
110	Highly efficient use of NaOCl in the Ru-catalysed oxidation of aliphatic ethers to esters. Chemical Communications, 2002, , 202-203.	4.1	26
111	Study of the Efficiency of Aminoâ€Functionalized Ruthenium and Ruthenacycle Complexes as Racemization Catalysts in the Dynamic Kinetic Resolution of 1â€Phenylethanol. Advanced Synthesis and Catalysis, 2007, 349, 2603-2609.	4.3	26
112	Substituent effects on the benzylic bond dissociation enthalpy in benzyl bromides (C–Br) and tert-butylbenzenes (C–CH3): a gas phase thermolysis and liquid phase photoacoustic study. Journal of the Chemical Society Perkin Transactions II, 1997, , 2307-2312.	0.9	25
113	Phosphiteâ€driven, [Cp*Rh(bpy)(H ₂ 0)] ²⁺ â€catalyzed reduction of nicotinamide and flavin cofactors: characterization and application to promote chemoenzymatic reduction reactions. Applied Organometallic Chemistry, 2010, 24, 380-385.	3.5	25
114	A highly efficient, green and recoverable catalytic system for the epoxidation of fatty esters and biodiesel with H2O2. Applied Catalysis A: General, 2012, 425-426, 91-96.	4.3	25
115	Hexafluoroacetone in Hexafluoro-2-propanol: A Highly Active Medium for Epoxidation with Aqueous Hydrogen Peroxide. Synlett, 2001, 2001, 1305-1307.	1.8	24
116	Reactivity of generated oxygen species from nitrous oxide over [Fe,Al]MFI catalysts for the direct oxidation of benzene to phenol. Catalysis Today, 2005, 110, 221-227.	4.4	24
117	Hydrolase-Catalysed Preparation of Chiral α,α-Disubstituted Cyanohydrin Acetates. Advanced Synthesis and Catalysis, 2007, 349, 1341-1344.	4.3	24
118	Enzyme-catalysed deprotection of N-acetyl and N-formyl amino acids. Journal of Molecular Catalysis B: Enzymatic, 2008, 54, 67-71.	1.8	23
119	Photoenzymatic epoxidation of styrenes. Chemical Communications, 2019, 55, 1790-1792.	4.1	23
120	Efficient Aerobic Oxidation of <i>trans</i> â€2â€Hexenâ€1â€ol using the Aryl Alcohol Oxidase from <i>Pleurotus eryngii</i> . Advanced Synthesis and Catalysis, 2019, 361, 2668-2672.	4.3	23
121	A One-Pot Enantioselective Chemo-Enzymatic Synthesis of Amino Acids in Water. Advanced Synthesis and Catalysis, 2006, 348, 471-475.	4.3	22
122	Pre-steady state kinetic studies on the microsecond time scale of the laccase from Trametes versicolor. Inorganica Chimica Acta, 2008, 361, 1202-1206.	2.4	22
123	Identification of catalytically important residues of the carotenoid 1,2-hydratases from Rubrivivax gelatinosus and Thiocapsa roseopersicina. Applied Microbiology and Biotechnology, 2016, 100, 1275-1284.	3.6	21
124	A Photo-Enzymatic Cascade to Transform Racemic Alcohols into Enantiomerically Pure Amines. Catalysts, 2019, 9, 305.	3.5	21
125	B-TUD-1: a versatile mesoporous catalyst. RSC Advances, 2013, 3, 21524.	3.6	20
126	Optimizing the chloroperoxidase–glucose oxidase system: The effect of glucose oxidase on activity and enantioselectivity. Process Biochemistry, 2015, 50, 746-751.	3.7	20

#	Article	IF	CITATIONS
127	The first enantioselective synthesis of the amavadin ligand and its complexation to vanadium. Journal of Inorganic Biochemistry, 2005, 99, 1264-1267.	3.5	19
128	Biochemical characterization of the carotenoid 1,2-hydratases (CrtC) from Rubrivivax gelatinosus and Thiocapsa roseopersicina. Applied Microbiology and Biotechnology, 2011, 91, 1029-1036.	3.6	19
129	Ionic TEMPO in Ionic Liquids: Specific Promotion of the Aerobic Oxidation of Alcohols. ChemCatChem, 2016, 8, 2704-2709.	3.7	19
130	A New Catalytic System for the Selective Aerobic Oxidation of Large Ring Cycloalkanes to Ketones. Organic Process Research and Development, 2003, 7, 426-428.	2.7	18
131	Systematic variation of 57Fe and Al content in isomorphously substituted 57FeZSM-5 zeolites: preparation and characterization. Microporous and Mesoporous Materials, 2004, 75, 237-246.	4.4	18
132	Relationship between structure, fluxionality and racemization activity in organometallic derivatives of polyoxometalates. Tetrahedron: Asymmetry, 2007, 18, 367-371.	1.8	17
133	Epoxidation of cyclooctene and cyclohexene with hydrogen peroxide catalyzed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide: Recyclable catalyst-containing phases through the use of glycerol-derived solvents. Journal of Molecular Catalysis A, 2011, 334, 83-88.	4.8	17
134	Increase of stability of oleate hydratase by appropriate immobilization technique and conditions. Journal of Molecular Catalysis B: Enzymatic, 2015, 119, 40-47.	1.8	17
135	Rhenium catalysed epoxidations with hydrogen peroxide: tertiary arsines as effective cocatalysts. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 377-380.	1.3	16
136	Probing the enantioselectivity of Bacillus subtilis esterase BS2 for tert. alcohols. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 82-86.	1.8	16
137	Selectivity of lipases for estolides synthesis. Pure and Applied Chemistry, 2015, 87, 51-58.	1.9	16
138	Studies on Substituted Aromatic Diselenides as Catalysts for Selective Alcohol Oxidation Using <i>tert</i> â€Butyl Hydroperoxide. European Journal of Organic Chemistry, 2011, 2011, 4345-4352.	2.4	15
139	Deazaflavins as photocatalysts for the direct reductive regeneration of flavoenzymes. Molecular Catalysis, 2018, 452, 277-283.	2.0	15
140	FOx News: Towards Methanolâ€driven Biocatalytic Oxyfunctionalisation Reactions. ChemCatChem, 2020, 12, 2713-2716.	3.7	15
141	Study of Hydrogen Shuttling Reactions in Anthracene/9,10-Dihydroanthraceneâ^'Naphthyl-X Mixtures. Energy & Fuels, 1996, 10, 235-242.	5.1	14
142	Chemoenzymatic Halocyclization of 4-Pentenoic Acid at Preparative Scale. ACS Sustainable Chemistry and Engineering, 2020, 8, 2602-2607.	6.7	14
143	The Surprisingly Facile Thermal Dehalogenation of Chlorinated Aromatics by a Hydroaromatic Donor Solvent. Tautomerization of Chlorinated Phenols and Anilines. Journal of Organic Chemistry, 2003, 68, 4247-4257.	3.2	13
144	Study on the isomerism in meso-amavadin and an amavadin analogue. Journal of Inorganic Biochemistry, 2007, 101, 900-908.	3.5	13

#	Article	IF	CITATIONS
145	Hydrophobic Formic Acid Esters for Cofactor Regeneration in Aqueous/Organic Two-Liquid Phase Systems. Topics in Catalysis, 2014, 57, 385-391.	2.8	13
146	Lipase-catalyzed transesterification of ethyl formate to octyl formate. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 7-10.	1.8	13
147	Nanoparticles of lanthanide oxysulfate/oxysulfide for improved oxygen storage/release. Dalton Transactions, 2016, 45, 14019-14022.	3.3	13
148	Pyrococcus furiosus-mediated reduction of conjugated carboxylic acids: Towards using syngas as reductant. Journal of Molecular Catalysis B: Enzymatic, 2014, 103, 52-55.	1.8	12
149	Thermal decomposition of 2,3-dihydro-1,4-benzodioxin and 1,2-dimethoxybenzene. Journal of the Chemical Society Perkin Transactions II, 1994, , 189.	0.9	11
150	Gas phase hydrogenolysis mediated by activated carbon: Monosubstituted benzenes. Carbon, 1996, 34, 581-588.	10.3	11
151	Stabilizing Factors for Vanadium(IV) in Amavadin. European Journal of Organic Chemistry, 2007, 2007, 2413-2422.	2.4	11
152	Aldol reactions mediated by a tetrahedral boronate. Chemical Communications, 2013, 49, 361-363.	4.1	11
153	Photochemical regeneration of flavoenzymes – An Old Yellow Enzyme case-study. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140303.	2.3	11
154	Microbial-catalysed resolution of sterically demanding cyanohydrins. Journal of Molecular Catalysis B: Enzymatic, 2010, 63, 87-92.	1.8	10
155	Laccase Did It again: A Scalable and Clean Regeneration System for NAD+ and Its Application in the Synthesis of 12-oxo-Hydroxysteroids. Catalysts, 2020, 10, 677.	3.5	10
156	Selective Oxyfunctionalisation Reactions Driven by Sulfite Oxidaseâ€Catalysed <i>In Situ</i> Generation of H ₂ O ₂ . ChemCatChem, 2020, 12, 3186-3189.	3.7	10
157	Synthesis of a Racemic Ester and Its Lipase-Catalyzed Kinetic Resolution. Journal of Chemical Education, 2002, 79, 1351.	2.3	9
158	Development of screening methods for transketolase activity and substrate scope. Tetrahedron Letters, 2012, 53, 790-793.	1.4	9
159	On the Resolution of Secondary Phosphine Oxides via Diastereomeric Complex Formation: The Case of tert-Butylphenylphosphine Oxide. Synthesis, 2009, 2009, 2061-2065.	2.3	8
160	A green and expedient synthesis of enantiopure diketopiperazines via enzymatic resolution of unnatural amino acids. Tetrahedron Letters, 2014, 55, 4991-4993.	1.4	8
161	Clean Enzymatic Oxidation of 12αâ€Hydroxysteroids to 12â€Oxoâ€Derivatives Catalyzed by Hydroxysteroid Dehydrogenase. Advanced Synthesis and Catalysis, 2019, 361, 2448-2455.	4.3	8
162	Enzymatic hydration activity assessed by selective spectrophotometric detection of alcohols: A novel screening assay using oleate hydratase as a model enzyme. Biotechnology Journal, 2014, 9, 814-821.	3.5	6

#	Article	IF	CITATIONS
163	Formation of chloroarenes upon gas-phase pyrolysis and slow combustion of benzene-HCl mixtures. Chemosphere, 1989, 18, 1965-1970.	8.2	4
164	Robust and straightforward chemo-enzymatic enantiopure dipeptide syntheses and diketopiperazines thereof. Tetrahedron: Asymmetry, 2014, 25, 825-832.	1.8	4
165	Tetrahedral boronates as basic catalysts in the aldol reaction. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2015, 70, 587-595.	0.7	3
166	Metals in Biotechnology: Crâ€Driven Stereoselective Reduction of Conjugated C=C Double Bonds. ChemBioChem, 2020, 21, 1112-1115.	2.6	3
167	The Characterization of FeZSM-5 by 57Fe Mössbauer Spectroscopy: Sensitivity Towards Nitrogen. Hyperfine Interactions, 2002, 141/142, 391-395.	0.5	2
168	A One-Pot Enantioselective Chemo-Enzymatic Synthesis of Amino Acids in Water. Advanced Synthesis and Catalysis, 2006, 348, 792-792.	4.3	2
169	Gasâ€phase pyrolysis of coumaran and 2,3â€dimethylcoumaran. Recueil Des Travaux Chimiques Des Pays-Bas, 1991, 110, 475-476.	0.0	2
170	Vanadium-catalyzed epoxidation reaction of cinnamyl alcohol in ionic liquids. Green Processing and Synthesis, 2012, 1, .	3.4	2
171	Gas-phase hydrogenolysis mediated by activated carbon: Deuterated benzenes. Recueil Des Travaux Chimiques Des Pays-Bas, 1996, 115, 271-274.	0.0	1
172	Selective Rutheniumâ€Catalyzed Oxidation of 1,2:4,5â€Diâ€Oâ€isopropylideneâ€Î²â€Dâ€fructopyranose and Otl Alcohols with NaOCl ChemInform, 2002, 33, 49-49.	her 0.0	1
173	Basics of Oxidations. , 0, , 200-213.		1
174	Copper(II)-Catalyzed Aerobic Oxidation to Primary Alcohols to Aldehydes ChemInform, 2004, 35, no.	0.0	0
175	Efficient Immobilization of Rh-MonoPhos on the Aluminosilicate AlTUD-1 ChemInform, 2005, 36, no.	0.0	0
176	Probing the Redox States of Iron in Steam-Treated Isomorphously Substituted [Fe,Al]MFI Catalyst. AIP Conference Proceedings, 2005, , .	0.4	0
177	Selenium Catalyzed Oxidations with Aqueous Hydrogen Peroxide. Part 3. Oxidation of Carbonyl	0.0	0