List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2881060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The interaction between the SEIS seismometer of the InSight Martian mission and a regolith simulant. Geotechnique, 2024, 74, 42-53.	4.0	2
2	Seismic constraints from a Mars impact experiment using InSight and Perseverance. Nature Astronomy, 2022, 6, 59-64.	10.1	9
3	Geometry and Segmentation of Cerberus Fossae, Mars: Implications for Marsquake Properties. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	20
4	The Lunar Geophysical Network Landing Sites Science Rationale. Planetary Science Journal, 2022, 3, 40.	3.6	7
5	Seasonal variations of subsurface seismic velocities monitored by the SEIS-InSight seismometer on Mars. Geophysical Journal International, 2022, 229, 776-799.	2.4	10
6	The Far Side of Mars: Two Distant Marsquakes Detected by InSight. The Seismic Record, 2022, 2, 88-99.	3.1	29
7	An autonomous lunar geophysical experiment package (ALGEP) for future space missions. Experimental Astronomy, 2022, 54, 617-640.	3.7	2
8	InSight Constraints on the Global Character of the Martian Crust. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	45
9	Seismic sources of InSight marsquakes and seismotectonic context of Elysium Planitia, Mars. Tectonophysics, 2022, 837, 229434.	2.2	18
10	Evidence for crustal seismic anisotropy at the InSight lander site. Earth and Planetary Science Letters, 2022, 593, 117654.	4.4	21
11	Companion guide to the marsquake catalog from InSight, Sols 0–478: Data content and non-seismic events. Physics of the Earth and Planetary Interiors, 2021, 310, 106597.	1.9	64
12	The whirlwinds of Elysium: A catalog and meteorological characteristics of "dust devil―vortices observed by InSight on Mars. Icarus, 2021, 355, 114119.	2.5	20
13	The Marsquake catalogue from InSight, sols 0–478. Physics of the Earth and Planetary Interiors, 2021, 310, 106595.	1.9	97
14	Super High Frequency Events: A New Class of Events Recorded by the InSight Seismometers on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006599.	3.6	19
15	The Polarization of Ambient Noise on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006545.	3.6	33
16	Measuring Fundamental and Higher Mode Surface Wave Dispersion on Mars From Seismic Waveforms. Earth and Space Science, 2021, 8, e2020EA001263.	2.6	0
17	Highâ€Frequency Seismic Events on Mars Observed by InSight. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006670.	3.6	40
18	Constraining Martian Regolith and Vortex Parameters From Combined Seismic and Meteorological Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006410.	3.6	16

#	Article	IF	CITATIONS
19	Analyzing Low Frequency Seismic Events at Cerberus Fossae as Long Period Volcanic Quakes. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006518.	3.6	19
20	Finding SEIS North on Mars: Comparisons Between SEIS Sundial, Inertial and Imaging Measurements and Consequences for Seismic Analysis. Earth and Space Science, 2021, 8, e2020EA001286.	2.6	3
21	Seismology on Venus with infrasound observations from balloon and orbit. , 2021, 53, .		0
22	Bayesian inversion of the Martian structure using geodynamic constraints. Geophysical Journal International, 2021, 226, 1615-1644.	2.4	12
23	"Land & Fly―Methods for Effective, Future Lunar Exploration. , 2021, 53, .		0
24	New-Frontiers (NF) Class In-Situ Exploration of Venus: The Venus Climate and Geophysics Mission Concept. , 2021, 53, .		0
25	The scientific rationale for deployment of a long-lived geophysical network on the Moon. , 2021, 53, .		4
26	Autocorrelation of the Ground Vibrations Recorded by the SEISâ€InSight Seismometer on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006498.	3.6	34
27	Listening for the Landing: Seismic Detections of Perseverance's Arrival at Mars With InSight. Earth and Space Science, 2021, 8, e2020EA001585.	2.6	5
28	A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006538.	3.6	33
29	First Focal Mechanisms of Marsquakes. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006546.	3.6	43
30	Magnitude Scales for Marsquakes Calibrated from InSight Data. Bulletin of the Seismological Society of America, 2021, 111, 3003-3015.	2.3	25
31	Vortexâ€Dominated Aeolian Activity at InSight's Landing Site, Part 1: Multiâ€Instrument Observations, Analysis, and Implications. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006757.	3.6	23
32	Seismic Noise Autocorrelations on Mars. Earth and Space Science, 2021, 8, e2021EA001755.	2.6	31
33	Thickness and structure of the martian crust from InSight seismic data. Science, 2021, 373, 438-443.	12.6	140
34	Forward Modeling of the Phobos Tides and Applications to the First Martian Year of the InSight Mission. Earth and Space Science, 2021, 8, e2021EA001669.	2.6	4
35	Upper mantle structure of Mars from InSight seismic data. Science, 2021, 373, 434-438.	12.6	105
36	Seismic detection of the martian core. Science, 2021, 373, 443-448.	12.6	169

#	Article	IF	CITATIONS
37	A Reconstruction Algorithm for Temporally Aliased Seismic Signals Recorded by the InSight Mars Lander. Earth and Space Science, 2021, 8, e2020EA001234.	2.6	6
38	Search for Infrasound Signals in InSight Data Using Coupled Pressure/Ground Deformation Methods. Bulletin of the Seismological Society of America, 2021, 111, 3055-3064.	2.3	8
39	The Site Tilt and Lander Transfer Function from the Short-Period Seismometer of InSight on Mars. Bulletin of the Seismological Society of America, 2021, 111, 2889-2908.	2.3	7
40	Potential Pitfalls in the Analysis and Structural Interpretation of Seismic Data from the Mars <i>InSight</i> Mission. Bulletin of the Seismological Society of America, 2021, 111, 2982-3002.	2.3	42
41	Improving Constraints on Planetary Interiors With PPs Receiver Functions. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006983.	3.6	34
42	Resonances and Lander Modes Observed by InSight on Mars (1–9ÂHz). Bulletin of the Seismological Society of America, 2021, 111, 2924-2950.	2.3	30
43	Scattering Attenuation of the Martian Interior through Coda-Wave Analysis. Bulletin of the Seismological Society of America, 2021, 111, 3035-3054.	2.3	17
44	Seasonal seismic activity on Mars. Earth and Planetary Science Letters, 2021, 576, 117171.	4.4	13
45	Seismic High-Resolution Acquisition Electronics for the NASA InSight Mission on Mars. Bulletin of the Seismological Society of America, 2021, 111, 2909-2923.	2.3	17
46	Resonances of the InSight Seismometer on Mars. Bulletin of the Seismological Society of America, 2021, 111, 2951-2963.	2.3	15
47	Energy Envelope and Attenuation Characteristics of High-Frequency (HF) and Very-High-Frequency (VF) Martian Events. Bulletin of the Seismological Society of America, 2021, 111, 3016-3034.	2.3	23
48	Anatomy of Continuous Mars SEIS and Pressure Data from Unsupervised Learning. Bulletin of the Seismological Society of America, 2021, 111, 2964-2981.	2.3	14
49	Numerical Simulations of the Apollo Sâ€IVB Artificial Impacts on the Moon. Earth and Space Science, 2021, 8, e2021EA001887.	2.6	7
50	Questions to Heaven. Astronomy and Geophysics, 2021, 62, 6.22-6.25.	0.2	2
51	Introduction to the Special Issue on Mars Seismology. Bulletin of the Seismological Society of America, 2021, 111, 2883-2888.	2.3	1
52	Crust stratigraphy and heterogeneities of the first kilometers at the dichotomy boundary in western Elysium Planitia and implications for InSight lander. Icarus, 2020, 338, 113511.	2.5	40
53	The Seismic Moment and Seismic Efficiency of Small Impacts on Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006540.	3.6	16
54	Contributions of Space Missions to Better Tsunami Science: Observations, Models and Warnings. Surveys in Geophysics, 2020, 41, 1535-1581.	4.6	6

#	Article	IF	CITATIONS
55	A New Crater Near InSight: Implications for Seismic Impact Detectability on Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006382.	3.6	24
56	Lunar Seismology: A Data and Instrumentation Review. Space Science Reviews, 2020, 216, 1.	8.1	59
57	Detection, Analysis, and Removal of Glitches From InSight's Seismic Data From Mars. Earth and Space Science, 2020, 7, e2020EA001317.	2.6	75
58	MSS/1: Singleâ€&tation and Singleâ€Event Marsquake Inversion. Earth and Space Science, 2020, 7, e2020EA001118.	2.6	16
59	Geophysical Observations of Phobos Transits by InSight. Geophysical Research Letters, 2020, 47, e2020GL089099.	4.0	10
60	Subsurface Structure at the InSight Landing Site From Compliance Measurements by Seismic and Meteorological Experiments. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006387.	3.6	44
61	Pressure Effects on the SEISâ€InSight Instrument, Improvement of Seismic Records, and Characterization of Long Period Atmospheric Waves From Ground Displacements. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006278.	3.6	31
62	Lagrangianâ€based Simulations of Hypervelocity Impact Experiments on Mars Regolith Proxy. Geophysical Research Letters, 2020, 47, e2020GL087393.	4.0	7
63	Martian Infrasound: Numerical Modeling and Analysis of InSight's Data. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006376.	3.6	28
64	The Ionospheric view of the 2011 Tohoku-Oki earthquake seismic source: the first 60 seconds of the rupture. Scientific Reports, 2020, 10, 5232.	3.3	9
65	The InSight Blind Test: An Opportunity to Bring a Research Dataset into Teaching Programs. Seismological Research Letters, 2020, 91, 1064-1073.	1.9	0
66	Geology of the InSight landing site on Mars. Nature Communications, 2020, 11, 1014.	12.8	107
67	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	12.9	161
68	Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 2020, 13, 213-220.	12.9	207
69	Crustal and time-varying magnetic fields at the InSight landing site on Mars. Nature Geoscience, 2020, 13, 199-204.	12.9	68
70	The seismicity of Mars. Nature Geoscience, 2020, 13, 205-212.	12.9	194
71	Onâ€Deck Seismology: Lessons from InSight for Future Planetary Seismology. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006353.	3.6	25
72	Monitoring of Dust Devil Tracks Around the InSight Landing Site, Mars, and Comparison With In Situ Atmospheric Data. Geophysical Research Letters, 2020, 47, e2020GL087234.	4.0	30

#	Article	IF	CITATIONS
73	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	12.9	274
74	Lunar Seismology: An Update on Interior Structure Models. Space Science Reviews, 2019, 215, 1.	8.1	60
75	SEIS: Insight's Seismic Experiment for Internal Structure of Mars. Space Science Reviews, 2019, 215, 12.	8.1	238
76	Mars' Background Free Oscillations. Space Science Reviews, 2019, 215, 1.	8.1	7
77	Estimation of the Seismic Moment Rate from an Incomplete Seismicity Catalog, in the Context of the InSight Mission to Mars. Bulletin of the Seismological Society of America, 2019, 109, 1125-1147.	2.3	7
78	The rheology and thermal history of Mars revealed by the orbital evolution of Phobos. Nature, 2019, 569, 523-527.	27.8	39
79	Sparse Reconstruction of Aliased Seismic Signals Recorded During the Insight Mars Mission. , 2019, , .		1
80	High Precision SEIS Calibration for the InSight Mission and Its Applications. Space Science Reviews, 2019, 215, 1.	8.1	7
81	InSight Auxiliary Payload Sensor Suite (APSS). Space Science Reviews, 2019, 215, 1.	8.1	104
82	Pre-mission InSights on the Interior of Mars. Space Science Reviews, 2019, 215, 1.	8.1	85
83	Determining True North on Mars by Using a Sundial on InSight. Space Science Reviews, 2019, 215, 1.	8.1	2
84	The first active seismic experiment on Mars to characterize the shallow subsurface structure at the InSight landing site. , 2019, , .		10
85	Presentâ€Day Mars' Seismicity Predicted From 3â€D Thermal Evolution Models of Interior Dynamics. Geophysical Research Letters, 2018, 45, 2580-2589.	4.0	35
86	Tsunami Wave Height Estimation from GPSâ€Đerived Ionospheric Data. Journal of Geophysical Research: Space Physics, 2018, 123, 4329-4348.	2.4	28
87	Vital Signs: Seismology of Icy Ocean Worlds. Astrobiology, 2018, 18, 37-53.	3.0	31
88	Magnitude Scales for Marsquakes. Bulletin of the Seismological Society of America, 2018, 108, 2764-2777.	2.3	18
89	A Numerical Model of the SEIS Leveling System Transfer Matrix and Resonances: Application to SEIS Rotational Seismology and Dynamic Ground Interaction. Space Science Reviews, 2018, 214, 1.	8.1	22
90	Inversion of Meteor Rayleigh Waves on Earth and Modeling of Air Coupled Rayleigh Waves on Mars. Space Science Reviews, 2018, 214, 1.	8.1	5

#	Article	IF	CITATIONS
91	The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight. Space Science Reviews, 2018, 214, 1.	8.1	41
92	Impact-Seismic Investigations of the InSight Mission. Space Science Reviews, 2018, 214, 1.	8.1	48
93	Atmospheric Science with InSight. Space Science Reviews, 2018, 214, 1.	8.1	88
94	On the Detectability and Use of Normal Modes for Determining Interior Structure of Mars. Space Science Reviews, 2018, 214, 1.	8.1	11
95	Development of the Primary Sorption Pump for the SEIS Seismometer of the InSight Mission to Mars. Space Science Reviews, 2018, 214, 1.	8.1	3
96	Remote sensing of venusian seismic activity with a small spacecraft, the VAMOS mission concept. , 2018, , .		7
97	Geology and Physical Properties Investigations by the InSight Lander. Space Science Reviews, 2018, 214, 1.	8.1	77
98	Influence of Body Waves, Instrumentation Resonances, and Prior Assumptions on Rayleigh Wave Ellipticity Inversion for Shallow Structure at the InSight Landing Site. Space Science Reviews, 2018, 214, 1.	8.1	10
99	A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site. Space Science Reviews, 2018, 214, 1.	8.1	58
100	VAMOS: a SmallSat mission concept for remote sensing of Venusian seismic activity from orbit. , 2018, ,		1
101	Selection of the InSight Landing Site. Space Science Reviews, 2017, 211, 5-95.	8.1	150
102	An Investigation of the Mechanical Properties of Some Martian Regolith Simulants with Respect to the Surface Properties at the InSight Mission Landing Site. Space Science Reviews, 2017, 211, 191-213.	8.1	42
103	Planned Products of the Mars Structure Service for the InSight Mission to Mars. Space Science Reviews, 2017, 211, 611-650.	8.1	80
104	Simulations of Seismic Wave Propagation on Mars. Space Science Reviews, 2017, 211, 571-594.	8.1	19
105	Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts. Space Science Reviews, 2017, 211, 547-570.	8.1	20
106	The Noise Model of the SEIS Seismometer of the InSight Mission to Mars. Space Science Reviews, 2017, 211, 383-428.	8.1	73
107	Evaluation of deep moonquake source parameters: Implication for fault characteristics and thermal state. Journal of Geophysical Research E: Planets, 2017, 122, 1487-1504.	3.6	27
108	Preparing for InSight: An Invitation to Participate in a Blind Test for Martian Seismicity. Seismological Research Letters, 2017, 88, 1290-1302.	1.9	37

#	Article	IF	CITATIONS
109	Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion. Space Science Reviews, 2017, 211, 501-524.	8.1	49
110	Analysis of Regolith Properties Using Seismic Signals Generated by InSight's HP3 Penetrator. Space Science Reviews, 2017, 211, 315-337.	8.1	31
111	Tsunami modeling with solid Earth–ocean–atmosphere coupled normal modes. Geophysical Journal International, 2017, 211, 1119-1138.	2.4	16
112	Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers. Space Science Reviews, 2017, 211, 429-455.	8.1	65
113	Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission. Space Science Reviews, 2017, 211, 457-483.	8.1	53
114	A probabilistic framework for single-station location of seismicity on Earth and Mars. Physics of the Earth and Planetary Interiors, 2017, 262, 48-65.	1.9	50
115	Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives. Journal of the Acoustical Society of America, 2016, 140, 1447-1468.	1.1	29
116	Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake. Nature Communications, 2016, 7, 13349.	12.8	61
117	Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Physics of the Earth and Planetary Interiors, 2016, 258, 28-42.	1.9	56
118	Traveling ionospheric disturbances propagating ahead of the Tohoku-Oki tsunami: a case study. Geophysical Journal International, 2016, 204, 1148-1158.	2.4	29
119	First tsunami gravity wave detection in ionospheric radio occultation data. Earth and Space Science, 2015, 2, 125-133.	2.6	55
120	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
121	Impact seismology on terrestrial and giant planets. , 2015, , 250-263.		4
122	Planetary Seismology. , 2015, , 65-120.		37
123	Seismometer Detection of Dust Devil Vortices by Ground Tilt. Bulletin of the Seismological Society of America, 2015, 105, 3015-3023.	2.3	39
124	Lunar Surface Gravimeter as a lunar seismometer: Investigation of a new source of seismic information on the Moon. Journal of Geophysical Research E: Planets, 2015, 120, 343-358.	3.6	9
125	Impact cutoff frequency – momentum scaling law inverted from Apollo seismic data. Earth and Planetary Science Letters, 2015, 427, 57-65.	4.4	19
126	Frequency band enlargement of the penetrator seismometer and its application to moonquake observation. Advances in Space Research, 2015, 56, 341-354.	2.6	4

#	Article	IF	CITATIONS
127	Low frequency noise elimination technique for 24-bit Σ-Δ data acquisition systems. Review of Scientific Instruments, 2015, 86, 034708.	1.3	3
128	Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars. Icarus, 2015, 248, 230-242.	2.5	71
129	Traveling ionosphere disturbances excited ahead of the Tohoku-Oki tsunami: a case study. , 2015, , .		0
130	Probing the Interiors of Planets withÂGeophysical Tools. , 2014, , 1185-1204.		2
131	On the scientific aims of the MISS seismic experiment. Solar System Research, 2014, 48, 11-21.	0.7	7
132	From Sumatra 2004 to Tohokuâ€Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes. Journal of Geophysical Research: Space Physics, 2013, 118, 3626-3636.	2.4	155
133	On the possibility of lunar core phase detection using new seismometers for soft-landers in future lunar missions. Planetary and Space Science, 2013, 81, 18-31.	1.7	11
134	GOCE: The first seismometer in orbit around the Earth. Geophysical Research Letters, 2013, 40, 1015-1020.	4.0	40
135	lonospheric response to earthquakes of different magnitudes: Larger quakes perturb the ionosphere stronger and longer. Geophysical Research Letters, 2013, 40, 1675-1681.	4.0	108
136	Parameters of seismic source as deduced from 1 Hz ionospheric GPS data: Case study of the 2011 Tohokuâ€oki event. Journal of Geophysical Research: Space Physics, 2013, 118, 5942-5950.	2.4	44
137	Modeling of the Total Electronic Content and magnetic field anomalies generated by the 2011 Tohoku-oki tsunami and associated acoustic-gravity waves. , 2013, , .		Ο
138	Modelling of the total electronic content and magnetic field anomalies generated by the 2011 Tohoku-Oki tsunami and associated acoustic-gravity waves. Geophysical Journal International, 2012, , no-no.	2.4	46
139	Erratum to "Very Preliminary Reference Moon Modelâ€; by R.F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné [Phys. Earth Planet. Inter. 188 (2011) 96–113]. Physics of the Earth and Planetary Interiors, 2012, 202-203, 89-91.	1.9	34
140	Farside explorer: unique science from a mission to the farside of the moon. Experimental Astronomy, 2012, 33, 529-585.	3.7	52
141	Power and duration of impact flashes on the Moon: Implication for the cause of radiation. Icarus, 2012, 218, 115-124.	2.5	36
142	Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution. Planetary and Space Science, 2012, 68, 123-145.	1.7	32
143	Design of an Antenna Array for GNSS/GPS Network. Lecture Notes in Computer Science, 2012, , 183-190.	1.3	0
144	Detection and modeling of Rayleigh wave induced patterns in the ionosphere. Journal of Geophysical Research, 2011, 116, .	3.3	121

#	Article	IF	CITATIONS
145	Radar sounding of temperate permafrost in Alaska: Analogy to the Martian midlatitude to high-latitude ice-rich terrains. Journal of Geophysical Research, 2011, 116, .	3.3	24
146	Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	127
147	First ionospheric images of the seismic fault slip on the example of the Tohoku-oki earthquake. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	102
148	Volatiles in the atmosphere of Mars: The effects of volcanism and escape constrained by isotopic data. Earth and Planetary Science Letters, 2011, 303, 299-309.	4.4	32
149	Very preliminary reference Moon model. Physics of the Earth and Planetary Interiors, 2011, 188, 96-113.	1.9	214
150	New approach to detect seismic surface waves in 1Hz-sampled GPS time series. Scientific Reports, 2011, 1, 44.	3.3	15
151	Tsunami signature in the ionosphere: A simulation of OTH radar observations. Radio Science, 2011, 46, .	1.6	26
152	Large impacts detected by the Apollo seismometers: Impactor mass and source cutoff frequency estimations. Icarus, 2011, 211, 1049-1065.	2.5	32
153	Optimisation of seismic network design: Application to a geophysical international lunar network. Planetary and Space Science, 2011, 59, 343-354.	1.7	32
154	The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 2011, 63, 853-857.	2.5	159
155	Seismic Detection of the Lunar Core. Science, 2011, 331, 309-312.	12.6	451
156	Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere. Earth, Planets and Space, 2011, 63, 847-851.	2.5	77
157	Nostradamus: The radar that wanted to be a seismometer. Geophysical Research Letters, 2010, 37, .	4.0	47
158	Ionospheric gravity waves detected offshore Hawaii after tsunamis. Geophysical Research Letters, 2010, 37, .	4.0	122
159	Seismic Waves from Atmospheric Sources and Atmospheric/Ionospheric Signatures of Seismic Waves. , 2010, , 281-304.		11
160	Response of the ionosphere to the seismic trigerred acoustic waves: electron density and electromagnetic fluctuations. Geophysical Journal International, 2009, 176, 1-13.	2.4	38
161	Lithosphere���atmosphere��ionosphere coupling after the 2003 explosive eruption of the Souf Volcano, Montserrat. Geophysical Journal International, 2009, 179, 1537-1546.	riere Hills 2.4	94
162	Lander radioscience for obtaining the rotation and orientation of Mars. Planetary and Space Science, 2009, 57, 1050-1067.	1.7	32

#	Article	IF	CITATIONS
163	Subsurface water detection on Mars by astronauts using a seismic refraction method: Tests during a manned Mars mission simulation. Acta Astronautica, 2009, 64, 457-466.	3.2	3
164	Reply to the comment of Robert E. Grimm and David E. Stillman on "Subsurface water detection on mars by astronauts using a seismic refraction method: Tests during a manned mars simulation― Acta Astronautica, 2009, 64, 656-657.	3.2	0
165	The present-day atmosphere of Mars: Where does it come from?. Earth and Planetary Science Letters, 2009, 277, 384-393.	4.4	22
166	A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth and Planetary Science Letters, 2009, 286, 503-513.	4.4	70
167	Effects of ejecta accumulation on the crater population of asteroid 433 Eros. Journal of Geophysical Research, 2009, 114, .	3.3	4
168	Moon meteoritic seismic hum: Steady state prediction. Journal of Geophysical Research, 2009, 114, .	3.3	53
169	Sounding the subsurface of Athabasca Valles using MARSIS radar data: Exploring the volcanic and fluvial hypotheses for the origin of the rafted plate terrain. Journal of Geophysical Research, 2009, 114, .	3.3	19
170	Numerical assessment of the effects of topography and crustal thickness on martian seismograms using a coupled modal solution–spectral element method. Icarus, 2008, 196, 78-89.	2.5	16
171	Geomagnetic dependence of ionospheric disturbances induced by tsunamigenic internal gravity waves. Geophysical Journal International, 2008, 173, 753-765.	2.4	99
172	A swarm of small shield volcanoes on Syria Planum, Mars. Journal of Geophysical Research, 2008, 113, .	3.3	32
173	The magnetic fluctuations in the lonosphere induced by 26 December 2004 Sumatra Tsunami. , 2007, , .		0
174	Planetary Seismology. , 2007, , 69-122.		25
175	The BepiColombo Laser Altimeter (BELA): Concept and baseline design. Planetary and Space Science, 2007, 55, 1398-1413.	1.7	80
176	Water, Life, and Planetary Geodynamical Evolution. Space Science Reviews, 2007, 129, 167-203.	8.1	28
177	Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars. Space Science Reviews, 2007, 129, 279-300.	8.1	53
178	Introduction: A Multidisciplinary Approach to Habitability. Space Science Reviews, 2007, 129, 1-5.	8.1	3
179	Epilogue: The Origins of Life in the Solar System and Future Exploration. Space Science Reviews, 2007, 129, 301-304.	8.1	3
180	Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars. Space Sciences Series of ISSI, 2007, , 279-300.	0.0	5

#	Article	lF	CITATIONS
181	Planetary Seismology. , 2007, , 69-122.		48
182	Water, Life, and Planetary Geodynamical Evolution. Space Sciences Series of ISSI, 2007, , 167-203.	0.0	1
183	Three-dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami. Geophysical Research Letters, 2006, 33, .	4.0	142
184	Lateral variations of lunar crustal thickness from the Apollo seismic data set. Earth and Planetary Science Letters, 2006, 243, 1-14.	4.4	83
185	A seismic model of the lunar mantle and constraints on temperature and mineralogy. Physics of the Earth and Planetary Interiors, 2006, 159, 140-166.	1.9	136
186	Seismic waves in the ionosphere. Europhysics News, 2006, 37, 11-15.	0.3	32
187	A top-down origin for martian mantle plumes. Icarus, 2006, 185, 197-210.	2.5	35
188	Ground-based GPS imaging of ionospheric post-seismic signal. Planetary and Space Science, 2006, 54, 528-540.	1.7	115
189	Ionospheric detection of gravity waves induced by tsunamis. Geophysical Journal International, 2005, 160, 840-848.	2.4	266
190	Three-dimensional ionospheric tomography of post-seismic perturbations produced by the Denali earthquake from GPS data. Geophysical Journal International, 2005, 163, 1049-1064.	2.4	61
191	Tsunami detection in the ionosphere. Space Research Today, 2005, 163, 23-27.	0.1	31
192	Interior structure of terrestrial planets: Modeling Mars' mantle and its electromagnetic, geodetic, and seismic properties. Journal of Geophysical Research, 2005, 110, .	3.3	68
193	Detecting atmospheric perturbations produced by Venus quakes. Geophysical Research Letters, 2005, 32, .	4.0	36
194	Constraints on the Martian lithosphere from gravity and topography data. Journal of Geophysical Research, 2005, 110, .	3.3	122
195	PLANETARY SEISMOLOGY. Annual Review of Earth and Planetary Sciences, 2005, 33, 571-604.	11.0	108
196	Acoustic waves generated from seismic surface waves: propagation properties determined from Doppler sounding observations and normal-mode modelling. Geophysical Journal International, 2004, 158, 1067-1077.	2.4	173
197	Network science, NetLander: a european mission to study the planet Mars. Planetary and Space Science, 2004, 52, 977-985.	1.7	27
198	MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions. Advances in Space Research, 2004, 34, 1702-1709.	2.6	7

#	Article	IF	CITATIONS
199	Does the Moon possess a molten core? Probing the deep lunar interior using results from LLR and Lunar Prospector. Journal of Geophysical Research, 2004, 109, .	3.3	69
200	Lander and penetrator science for near-Earth object mitigation studies. , 2004, , 266-291.		3
201	Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus, 2003, 161, 281-296.	2.5	52
202	Mars in depth. Astronomy and Geophysics, 2003, 44, 4.15-4.15.	0.2	2
203	Normal modes and long period seismograms in a 3D anelastic elliptical rotating Earth. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	12
204	Ionospheric remote sensing of the Denali Earthquake Rayleigh surface waves. Geophysical Research Letters, 2003, 30, .	4.0	179
205	A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon. Earth and Planetary Science Letters, 2003, 211, 27-44.	4.4	216
206	85.16 Higher order perturbation theory: 3D synthetic seismogram package. International Geophysics, 2003, 81, 1639.	0.6	4
207	10 Normal modes of the earth and planets. International Geophysics, 2002, 81, 125-I.	0.6	21
208	The Lavoisier mission : A system of descent probe and balloon flotilla for geochemical investigation of the deep atmosphere and surface of Venus. Advances in Space Research, 2002, 29, 255-264.	2.6	6
209	Geophysical ocean bottom observatories or temporary portable networks?. Developments in Marine Technology, 2002, , 59-81.	0.5	2
210	Normal modes modelling of post-seismic ionospheric oscillations. Geophysical Research Letters, 2001, 28, 697-700.	4.0	90
211	First seismic receiver functions on the Moon. Geophysical Research Letters, 2001, 28, 3031-3034.	4.0	59
212	Scientific objectives of the DYNAMO mission. Advances in Space Research, 2001, 27, 1851-1860.	2.6	4
213	The NetLander very broad band seismometer. Planetary and Space Science, 2000, 48, 1289-1302.	1.7	61
214	Seismic waveform modeling and surface wave tomography in a three-dimensional Earth: asymptotic and non-asymptotic approaches. Physics of the Earth and Planetary Interiors, 2000, 119, 37-56.	1.9	37
215	Network science landers for Mars. Advances in Space Research, 1999, 23, 1915-1924.	2.6	46
216	A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station. Planetary and Space Science, 1998, 46, 717-737.	1.7	32

#	ARTICLE	IF	CITATIONS
217	The seismic OPTIMISM experiment. Planetary and Space Science, 1998, 46, 739-747.	1.7	31
218	Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere. Geophysical Journal International, 1998, 135, 388-406.	2.4	159
219	Towards multiscalar and multiparameter networks for the next century: The French efforts. Physics of the Earth and Planetary Interiors, 1998, 108, 155-174.	1.9	21
220	Diffraction of long period Rayleigh waves by a slab: effects of mode coupling. Geophysical Research Letters, 1997, 24, 1035-1038.	4.0	8
221	Impact Seismology: A Search for Primary Pressure Waves Following Impacts A and H. Icarus, 1996, 121, 331-340.	2.5	19
222	Ultra broad band seismology on InterMarsNet. Planetary and Space Science, 1996, 44, 1237-1249.	1.7	57
223	Fréchet derivatives of coupled seismograms with respect to an anelastic rotating earth. Geophysical Journal International, 1996, 124, 456-482.	2.4	20
224	The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station. Bulletin of the Seismological Society of America, 1996, 86, 1760-1769.	2.3	117
225	10 micron mapping of Jupiter on the CFHT after the impacts of comet P/Shoemaker‣evy 9. Geophysical Research Letters, 1995, 22, 1777-1780.	4.0	4
226	Excitation of Jovian Seismic Waves by the Shoemaker-Levy 9 Cometary Impact. Icarus, 1994, 110, 180-195.	2.5	30
227	A new technique in demodulation of normal modes. Physics of the Earth and Planetary Interiors, 1994, 84, 139-160.	1.9	4
228	The French Pilot Experiment OFM-SISMOBS: first scientific results on noise level and event detection. Physics of the Earth and Planetary Interiors, 1994, 84, 321-336.	1.9	58
229	Planetary seismology. Surveys in Geophysics, 1993, 14, 239-302.	4.6	132
230	Normal modes and seismograms in an anelastic rotating Earth. Journal of Geophysical Research, 1991, 96, 20309-20319.	3.3	64
231	Modelling of coupled normal modes of the Earth: the spectral method. Geophysical Journal International, 1990, 102, 365-395.	2.4	68
232	Effect of a global plume distribution on Earth normal modes. Geophysical Research Letters, 1990, 17, 1493-1496.	4.0	7
233	Effect of sharp lateral heterogeneity on the Earth's normal modes. Geophysical Research Letters, 1989, 16, 397-400.	4.0	6

#	Article	IF	CITATIONS
235	Preparing for InSight: Evaluation of the Blind Test for Martian Seismicity. Seismological Research Letters, 0, , .	1.9	5