Xian-Zhong Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2880993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon, 2011, 49, 573-580.	10.3	620
2	Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. Journal of Power Sources, 2011, 196, 5990-5996.	7.8	528
3	Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance. Advanced Materials, 2015, 27, 7451-7457.	21.0	386
4	Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochimica Acta, 2013, 89, 523-529.	5.2	283
5	Shape-Controlled Synthesis of 3D Hierarchical MnO ₂ Nanostructures for Electrochemical Supercapacitors. Crystal Growth and Design, 2009, 9, 528-533.	3.0	253
6	Electrophoretic deposition of graphene nanosheets on nickel foams for electrochemical capacitors. Journal of Power Sources, 2010, 195, 3031-3035.	7.8	240
7	Flexible Solidâ€State Supercapacitors with Enhanced Performance from Hierarchically Graphene Nanocomposite Electrodes and Ionic Liquid Incorporated Gel Polymer Electrolyte. Advanced Functional Materials, 2018, 28, 1704463.	14.9	239
8	Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. Journal of Power Sources, 2007, 173, 1017-1023.	7.8	219
9	Recent advances in porous graphene materials for supercapacitor applications. RSC Advances, 2014, 4, 45862-45884.	3.6	213
10	Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale, 2018, 10, 5906-5913.	5.6	212
11	One-Step Electrophoretic Deposition of Reduced Graphene Oxide and Ni(OH) ₂ Composite Films for Controlled Syntheses Supercapacitor Electrodes. Journal of Physical Chemistry B, 2013, 117, 1616-1627.	2.6	195
12	Scalable Selfâ€Propagating Highâ€Temperature Synthesis of Graphene for Supercapacitors with Superior Power Density and Cyclic Stability. Advanced Materials, 2017, 29, 1604690.	21.0	186
13	Fast Charging Anode Materials for Lithiumâ€lon Batteries: Current Status and Perspectives. Advanced Functional Materials, 2022, 32, .	14.9	185
14	High-Performance Cable-Type Flexible Rechargeable Zn Battery Based on MnO ₂ @CNT Fiber Microelectrode. ACS Applied Materials & Interfaces, 2018, 10, 24573-24582.	8.0	174
15	High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. Journal of Power Sources, 2014, 270, 318-325.	7.8	161
16	Cationic intermediates assisted self-assembly two-dimensional Ti3C2T /rGO hybrid nanoflakes for advanced lithium-ion capacitors. Science Bulletin, 2021, 66, 914-924.	9.0	161
17	High-performance supercapacitors based on a graphene–activated carbon composite prepared by chemical activation. RSC Advances, 2012, 2, 7747.	3.6	152
18	High Performance Lithium-Ion Hybrid Capacitors Employing Fe ₃ O ₄ –Graphene Composite Anode and Activated Carbon Cathode. ACS Applied Materials & Interfaces, 2017, 9, 17136-17144.	8.0	152

#	Article	IF	CITATIONS
19	Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor. Electrochimica Acta, 2017, 235, 158-166.	5.2	134
20	Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chemical Engineering Journal, 2021, 414, 128781.	12.7	134
21	Flexible solid-state supercapacitors based on a conducting polymer hydrogel with enhanced electrochemical performance. Journal of Materials Chemistry A, 2014, 2, 19726-19732.	10.3	132
22	Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Materials, 2020, 32, 497-516.	18.0	125
23	High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Materials, 2020, 24, 160-166.	18.0	124
24	Tetrabutylammoniumâ€Intercalated 1Tâ€MoS ₂ Nanosheets with Expanded Interlayer Spacing Vertically Coupled on 2D Delaminated MXene for Highâ€Performance Lithiumâ€Ion Capacitors. Advanced Functional Materials, 2021, 31, 2104286.	14.9	106
25	Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide. Scientific Reports, 2013, 3, 3534.	3.3	104
26	High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode. Carbon, 2018, 140, 237-248.	10.3	102
27	Ethylene Glycol Intercalated Cobalt/Nickel Layered Double Hydroxide Nanosheet Assemblies with Ultrahigh Specific Capacitance: Structural Design and Green Synthesis for Advanced Electrochemical Storage. ACS Applied Materials & Interfaces, 2015, 7, 19601-19610.	8.0	101
28	Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale, 2018, 10, 13083-13091.	5.6	101
29	Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability. Electrochimica Acta, 2012, 63, 220-227.	5.2	96
30	Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties. Science Bulletin, 2012, 57, 3045-3050.	1.7	94
31	Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays. Nanoscale Research Letters, 2010, 5, 1822-1828.	5.7	93
32	High-power lithium-ion hybrid supercapacitor enabled by holey carbon nanolayers with targeted porosity. Journal of Power Sources, 2018, 400, 468-477.	7.8	93
33	One-step solvothermal synthesis of graphene/Mn3O4 nanocomposites and their electrochemical properties for supercapacitors. Materials Letters, 2012, 68, 336-339.	2.6	86
34	Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors. Electrochimica Acta, 2013, 87, 637-644.	5.2	84
35	Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid Composite Electrolytes. Energy Storage Materials, 2021, 36, 291-308.	18.0	82
36	An environment-friendly route to synthesize reduced graphene oxide as a supercapacitor electrode material. Electrochimica Acta, 2012, 69, 364-370.	5.2	81

#	Article	IF	CITATIONS
37	Synthesis and characterization of $\hat{I}\pm$ -MnO2 nanowires: Self-assembly and phase transformation to \hat{I}^2 -MnO2 microcrystals. Journal of Crystal Growth, 2008, 310, 716-722.	1.5	78
38	A two-step method for preparing Li ₄ Ti ₅ O ₁₂ –graphene as an anode material for lithium-ion hybrid capacitors. RSC Advances, 2015, 5, 94361-94368.	3.6	71
39	Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method. Materials Chemistry and Physics, 2009, 118, 303-307.	4.0	70
40	A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes. Journal of Solid State Electrochemistry, 2012, 16, 2597-2603.	2.5	70
41	A general route for the mass production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors. Journal of Materials Chemistry A, 2021, 9, 15654-15664.	10.3	69
42	Development of redox deposition of birnessite-type MnO2 on activated carbon as high-performance electrode for hybrid supercapacitors. Materials Chemistry and Physics, 2012, 137, 290-296.	4.0	68
43	Solution-combustion synthesis of ε-MnO2 for supercapacitors. Materials Letters, 2010, 64, 61-64.	2.6	66
44	Online parameters identification and state of charge estimation for lithium-ion capacitor based on improved Cubature Kalman filter. Journal of Energy Storage, 2019, 24, 100810.	8.1	66
45	One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors. Journal of Alloys and Compounds, 2012, 511, 251-256.	5.5	65
46	Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Metals, 2019, 38, 1113-1123.	7.1	65
47	High-Performance Lithium-Ion Capacitors Based on CoO-Graphene Composite Anode and Holey Carbon Nanolayer Cathode. ACS Sustainable Chemistry and Engineering, 2019, 7, 11275-11283.	6.7	65
48	Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Science China Materials, 2016, 59, 412-420.	6.3	62
49	Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve (OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application. Electrochimica Acta, 2014, 132, 315-322.	5.2	61
50	A 29.3†Wh kgâ^'1 and 6†kW†kgâ^'1 pouch-type lithium-ion capacitor based on SiOx/graphite composite a Journal of Power Sources, 2019, 414, 293-301.	node. 7.8	61
51	Hydrogen-bonding organization of (4,4) coordination layers into a 3-D molecular architecture with channels clathrating guest molecules [Cu(tdc)(bpy)(H2O)](bpy) (tdc=thiophine-2,5-dicarboxylate;) Tj ETQq1 1 C	.7849314	rgBā9¦Overlo
52	Self-generating graphene and porous nanocarbon composites for capacitive energy storage. Journal of Materials Chemistry A, 2015, 3, 11277-11286.	10.3	58
53	Scalable Production of Wearable Solid‣tate Li″on Capacitors from Nâ€Đoped Hierarchical Carbon. Advanced Materials, 2020, 32, e2005531.	21.0	57
54	Remaining useful life prediction based on denoising technique and deep neural network for lithium-ion capacitors. ETransportation, 2020, 5, 100078.	14.8	56

#	Article	IF	CITATIONS
55	Accordion-like titanium carbide (MXene) with high crystallinity as fast intercalative anode for high-rate lithium-ion capacitors. Chinese Chemical Letters, 2020, 31, 1009-1013.	9.0	54
56	Novel Ag–Cu substrates for surface-enhanced Raman scattering. Materials Letters, 2009, 63, 2306-2308.	2.6	50
57	Leakage current and self-discharge in lithium-ion capacitor. Journal of Electroanalytical Chemistry, 2019, 850, 113386.	3.8	50
58	2D Graphene/MnO Heterostructure with Strongly Stable Interface Enabling Highâ€Performance Flexible Solid‧tate Lithium″on Capacitors. Advanced Functional Materials, 2022, 32, .	14.9	50
59	Largeâ€ S cale Production of Nanographene Sheets with a Controlled Mesoporous Architecture as Highâ€Performance Electrochemical Electrode Materials. ChemSusChem, 2013, 6, 1084-1090.	6.8	49
60	Three dimensional graphene networks for supercapacitor electrode materials. New Carbon Materials, 2015, 30, 193-206.	6.1	49
61	Room temperature synthesis of Mn3O4 nanoparticles: characterization, electrochemical properties and hydrothermal transformation to Î ³ -MnO2 nanorods. Materials Letters, 2013, 92, 401-404.	2.6	48
62	Graphene-Based Hierarchically Micro/Mesoporous Nanocomposites as Sulfur Immobilizers for High-Performance Lithium–Sulfur Batteries. Chemistry of Materials, 2016, 28, 7864-7871.	6.7	48
63	The Role of Pre-Lithiation in Activated Carbon/Li 4 Ti 5 O 12 Asymmetric Capacitors. Electrochimica Acta, 2017, 236, 443-450.	5.2	47
64	Electrochemical impedance spectroscopy study of lithium-ion capacitors: Modeling and capacity fading mechanism. Journal of Power Sources, 2021, 488, 229454.	7.8	47
65	(LiNi 0.5 Co 0.2 Mn 0.3 O 2 Â+ÂAC)/graphite hybrid energy storage device with high specific energy and high rate capability. Journal of Power Sources, 2013, 243, 361-368.	7.8	46
66	Recent advances in transition metal chalcogenides for lithium-ion capacitors. Rare Metals, 2022, 41, 2971-2984.	7.1	46
67	Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors. Journal of Power Sources, 2008, 184, 695-700.	7.8	45
68	Self-template route to MnO2 hollow structures for supercapacitors. Materials Letters, 2010, 64, 1480-1482.	2.6	43
69	Effects of Separator on the Electrochemical Performance of Electrical Double-Layer Capacitor and Hybrid Battery-Supercapacitor. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 485-491.	4.9	43
70	Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li–ion battery. Rare Metals, 2021, 40, 521-528.	7.1	43
71	Facile fabrication of ethylene glycol intercalated cobalt-nickel layered double hydroxide nanosheets supported on nickel foam as flexible binder-free electrodes for advanced electrochemical energy storage. Electrochimica Acta, 2016, 191, 329-336.	5.2	41
72	Intercalation of methylene blue into layered manganese oxide and application of the resulting material in a reagentless hydrogen peroxide biosensor. Sensors and Actuators B: Chemical, 2008, 129, 784-789.	7.8	40

#	Article	IF	CITATIONS
73	Enhanced capacitance supercapacitor electrodes from porous carbons with high mesoporous volume. Electrochimica Acta, 2015, 184, 347-355.	5.2	40
74	Microwave-assisted rapid synthesis of birnessite-type MnO2 nanoparticles for high performance supercapacitor applications. Materials Research Bulletin, 2015, 71, 111-115.	5.2	40
75	Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte. Journal of Materials Chemistry A, 2018, 6, 24979-24987.	10.3	39
76	Synthesis of Polypyrrole-Intercalated Layered Manganese Oxide Nanocomposite by a Delaminationâ^•Reassembling Method and Its Electrochemical Capacitance Performance. Electrochemical and Solid-State Letters, 2009, 12, A95.	2.2	37
77	Fabrication of silver-coated silicon nanowire arrays for surface-enhanced Raman scattering by galvanic displacement processes. Applied Surface Science, 2009, 256, 916-920.	6.1	36
78	Recent progress of graphene-based materials in lithium-ion capacitors. Journal Physics D: Applied Physics, 2019, 52, 143001.	2.8	36
79	Photoluminescence origins of the porous silicon nanowire arrays. Journal of Applied Physics, 2011, 110, .	2.5	34
80	Graphene and maghemite composites based supercapacitors delivering high volumetric capacitance and extraordinary cycling stability. Electrochimica Acta, 2015, 156, 70-76.	5.2	33
81	High performance supercapacitor electrodes based on deoxygenated graphite oxide by ball milling. Electrochimica Acta, 2013, 109, 874-880.	5.2	32
82	Investigation on the characteristics of La0.7Mg0.3Ni2.65Mn0.1Co0.75+x (x = 0.00–0.85) metal hydride electrode alloys for Ni/MH batteries Part II: Electrochemical performances. Journal of Alloys and Compounds, 2005, 388, 109-117.	5.5	31
83	Fabrication and characterization of polycrystalline silicon nanowires with silver-assistance by electroless deposition. Applied Surface Science, 2011, 257, 3861-3866.	6.1	31
84	Application of a novel binder for activated carbon-based electrical double layer capacitors with nonaqueous electrolytes. Journal of Solid State Electrochemistry, 2013, 17, 2035-2042.	2.5	31
85	Recent Advances on Carbonâ€Based Materials for High Performance Lithiumâ€Ion Capacitors. Batteries and Supercaps, 2021, 4, 407-428.	4.7	31
86	Carbon-coated Li3VO4 with optimized structure as high capacity anode material for lithium-ion capacitors. Chinese Chemical Letters, 2020, 31, 2225-2229.	9.0	29
87	Nitrogen-enriched graphene framework from a large-scale magnesiothermic conversion of CO2 with synergistic kinetics for high-power lithium-ion capacitors. NPG Asia Materials, 2021, 13, .	7.9	29
88	High power density of graphene-based supercapacitors in ionic liquid electrolytes. Materials Letters, 2012, 68, 475-477.	2.6	28
89	Direct electrochemistry and electrocatalysis with horseradish peroxidase immobilized in polyquaternium-manganese oxide nanosheet nanocomposite films. Sensors and Actuators B: Chemical, 2008, 134, 182-188.	7.8	25
90	Effects of carbon black on the electrochemical performances of SiO anode for lithium-ion capacitors. Journal of Power Sources, 2021, 499, 229936.	7.8	25

6

#	Article	IF	CITATIONS
91	High-capacity nanocarbon anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 622, 783-788.	5.5	24
92	A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density. Journal of Energy Chemistry, 2022, 64, 442-450.	12.9	24
93	Supercapacitor electrodes with especially high rate capability and cyclability based on a novel Pt nanosphere and cysteine-generated graphene. Physical Chemistry Chemical Physics, 2012, 14, 10899.	2.8	23
94	Temperature effect on electrochemical performances of Li-ion hybrid capacitors. Journal of Solid State Electrochemistry, 2015, 19, 2501-2506.	2.5	23
95	Experimental study of thermal charge–discharge behaviors of pouch lithium-ion capacitors. Journal of Energy Storage, 2019, 25, 100902.	8.1	23
96	Rapid Ion Transport Induced by the Enhanced Interaction in Composite Polymer Electrolyte for All-Solid-State Lithium-Metal Batteries. Journal of Physical Chemistry Letters, 2021, 12, 10603-10609.	4.6	23
97	Equivalent circuit models and parameter identification methods for lithium-ion capacitors. Journal of Energy Storage, 2019, 24, 100762.	8.1	22
98	High-performance solid-state Zn batteries based on a free-standing organic cathode and metal Zn anode with an ordered nano-architecture. Nanoscale Advances, 2020, 2, 296-303.	4.6	21
99	Effect of high magnetic field annealing on the microstructure and magnetic properties of Co–Fe layered double hydroxide. Journal of Magnetism and Magnetic Materials, 2010, 322, 3023-3027.	2.3	20
100	Improvement of the high-rate capability of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode by adding highly electroconductive and mesoporous graphene. Journal of Alloys and Compounds, 2018, 758, 206-213.	5.5	20
101	Supramolecular architectures of metallomacrocyclic and coordination polymers with dicarboxylate and 4,4′-bis(imidazol-1-ylmethyl)biphenyl ligands. Journal of Molecular Structure, 2007, 828, 10-14.	3.6	18
102	Roles of sodium induced defects in CuInSe2 by first principles calculation. Computational Materials Science, 2009, 47, 31-34.	3.0	18
103	The synthesis and photoluminescence properties of selenium-treated porous silicon nanowire arrays. Nanotechnology, 2011, 22, 075203.	2.6	18
104	Segmented bi-material cathodes to boost the lithium-ion battery-capacitors. Journal of Power Sources, 2020, 478, 228994.	7.8	17
105	Controllable Synthesis of <i>α</i> -MnO ₂ Nanostructures and Phase Transformation to <i>β</i> -MnO ₂ Microcrystals by Hydrothermal Crystallization. Journal of Nanoscience and Nanotechnology, 2010, 10, 898-904.	0.9	16
106	Nâ€doping Hierarchical Porosity Carbon from Biowaste for Highâ€Rate Supercapacitive Application. ChemistrySelect, 2017, 2, 6194-6199.	1.5	16
107	Anomalous diffusion models in frequency-domain characterization of lithium-ion capacitors. Journal of Power Sources, 2021, 490, 229332.	7.8	15
108	Fabrication and characterization of a novel inorganic MnO2/LDHs multilayer thin film via a layer-by-layer self-assembly method. Materials Letters, 2008, 62, 1613-1616.	2.6	14

#	Article	IF	CITATIONS
109	Biopolymer-manganese oxide nanoflake nanocomposite films fabricated by electrostatic layer-by-layer assembly. Materials Science and Engineering C, 2009, 29, 284-287.	7.3	14
110	Dandelion-like cobalt hydroxide nanostructures: morphological evolution, soft template effect and supercapacitive application. RSC Advances, 2014, 4, 59603-59613.	3.6	14
111	Investigation on the characteristics of La0.7Mg0.3Ni2.65Mn0.1Co0.75+x (x = 0.00–0.85) metal hydride electrode alloys for Ni/MH batteries. Journal of Alloys and Compounds, 2005, 387, 147-153.	5.5	13
112	Low-temperature hydrothermal synthesis of α-MnO2 three-dimensional nanostructures. Materials Letters, 2010, 64, 583-585.	2.6	13
113	A presodiation strategy with high efficiency by utilizing low-price and eco-friendly Na2CO3 as the sacrificial salt towards high-performance pouch sodium-ion capacitors. Journal of Power Sources, 2021, 515, 230628.	7.8	13
114	Additives to propylene carbonate-based electrolytes for lithium-ion capacitors. Rare Metals, 2022, 41, 1304-1313.	7.1	13
115	Growth and characterization of ZnIn2Se4 buffer layer on CuInSe2 thin films. Journal of Crystal Growth, 2009, 312, 48-51.	1.5	12
116	Experimental Investigation of Electrochemical Impedance Spectroscopy of Electrical Double Layer Capacitor. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 2071-2076.	4.9	12
117	Activated Carbon-Based Supercapacitors Using Li ₂ SO ₄ Aqueous Electrolyte. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 367-372.	4.9	12
118	Increased electrochemical properties of ruthenium oxide and graphene/ruthenium oxide hybrid dispersed by polyvinylpyrrolidone. Journal of Alloys and Compounds, 2012, 541, 415-420.	5.5	11
119	Microwave-assisted synthesis of 3D flowerlike α-Ni(OH)2 nanostructures for supercapacitor application. Science China Technological Sciences, 2015, 58, 1871-1876.	4.0	11
120	A Fast and Scalable Pre-Lithiation Approach for Practical Large-Capacity Lithium-Ion Capacitors. Journal of the Electrochemical Society, 2021, 168, 110540.	2.9	11
121	Ferromagnetism in sub-micron scale BiFeO3. Materials Letters, 2011, 65, 3309-3312.	2.6	10
122	Soft template-assisted synthesis of single crystalline β-cobalt hydroxide with distinct morphologies. CrystEngComm, 2014, 16, 7478.	2.6	10
123	Electrophoretic Deposition of a Thick Film of Layered Manganese Oxide. Chemistry Letters, 2007, 36, 1228-1229.	1.3	9
124	Hydrothermal-Reduction Synthesis of Manganese Oxide Nanomaterials for Electrochemical Supercapacitors. Journal of Nanoscience and Nanotechnology, 2010, 10, 7711-7714.	0.9	9
125	One-pot hydrothermal synthesis of β-MnO2 crystals and their magnetic properties. Journal of Physics and Chemistry of Solids, 2013, 74, 1626-1631.	4.0	9
126	Deoxygenated porous carbon with highly stable electrochemical reaction interface for practical high-performance lithium-ion capacitors. Journal Physics D: Applied Physics, 2022, 55, 045501.	2.8	9

#	Article	IF	CITATIONS
127	Direct Electrochemistry of Myoglobin in MnO2Nanosheet Film. Chemistry Letters, 2007, 36, 772-773.	1.3	8
128	Design of a fast-charge lithium-ion capacitor pack for automated guided vehicle. Journal of Energy Storage, 2022, 48, 104045.	8.1	8
129	Cycling stability of La-Mg-Ni-Co type hydride electrode with Al. Transactions of Nonferrous Metals Society of China, 2006, 16, 8-12.	4.2	7
130	Facile fabrication of nanostructured NiCo ₂ O ₄ supported on Ni foam for high performance electrochemical energy storage. RSC Advances, 2015, 5, 80620-80624.	3.6	6
131	Cycling stability of La-Mg-Ni-Co type hydride electrode with Al. Transactions of Nonferrous Metals Society of China, 2006, 16, s834-s838.	4.2	5
132	Magnesiothermic sequestration of CO2 into carbon nanomaterials for electrochemical energy storage: A mini review. Electrochemistry Communications, 2021, 130, 107109.	4.7	5
133	Sodium Manganese Oxide Nanobelts with a 2 × 4 Tunnel Structure: One-Step Hydrothermal Synthesis and Electrocatalytic Properties. Journal of Nanoscience and Nanotechnology, 2009, 9, 5860-5864.	0.9	4
134	Organic Electrolytes for Activated Carbon-Based Supercapacitors with Flexible Package. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 1998-2004.	4.9	4
135	catena-Poly[[[bis(3-hydroxynaphthalene-2-carboxylato)zinc(II)]-μ-4,4′-bipyridine-κ2N:N′] hemihydrate]. Ac Crystallographica Section E: Structure Reports Online, 2006, 62, m2238-m2240.	.ta 0.2	2
136	2′-[(Phenyl)(1-phenyl-3-methyl-5-oxo-4,5-dihydro-1H-pyrazole-4-ylidene)methyl]-1-naphthohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2005-o2006.	0.2	2
137	1,5-Dimethyl-2-phenyl-4-[(1E)-(2-quinolyl)methylideneamino]-1H-pyrazol-3(2H)-one. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2178-o2179.	0.2	2
138	4-Hydroxy-3,5-dimethoxybenzaldehyde 3,4,5-trimethoxybenzoylhydrazone monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2180-o2181.	0.2	1
139	Crystal structure of N-(1,2-di(pyridin-2-yi)methyl)picolinamido-(isothiocyanato)nickie(ii) sesquihydrate, Ni(NCS)(C12H10N3O) ŷ 1.5H2O, a correction to the article "Crystal structure of 2-hydroxy-1,2-di(pyridin-2-yl)ethanone-(isothiocyanato)nickel(II) sesquihydrate, Ni(NCS)(C12H10N2O2) · 1.5H2Oâ€, Z. Kristallogr. NCS 225 (2010) 41-42. Zeitschrift Fur Kristallographie - New Crystal Structures,	0.3	1
140	2010, 225, 695 695. Experimental Study on Calendar Aging of Commercial Lithium-ion Capacitors. , 2020, , .		1
141	A two-dimensional network: poly[aqua-μ2-1,4-diazabicyclo[2.2.2]octane-μ2-terephthalato-zinc(II)]. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m2224-m2226.	0.2	0
142	catena-Poly[[[μ-4,4′-bipyridine-bis[aquazinc(II)]]-di-μ-benzene-1,3-dicarboxylato] dihydrate]. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m2363-m2365.	0.2	0
143	Preparation of Photoluminescent Silicon Nanowires Based on Multicrystalline Silicon Wafers. Materials Science Forum, 2010, 654-656, 1182-1185.	0.3	0
144	Design of a handheld infrared imaging device based on uncooled infrared detector. , 2017, , .		0

0

#	Article	IF	CITATIONS
145	Research on artistic gymnastics training guidance model. AIP Conference Proceedings, 2017, , .	0.4	0

Real-time pseudo-color processing of infrared images based on FPGA. , 2018, , .