
James Cockram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2880935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trends of genetic changes uncovered by Env- and Eigen-GWAS in wheat and barley. Theoretical and Applied Genetics, 2022, 135, 667-678.	1.8	8
2	Wheat genetic loci conferring resistance to stripe rust in the face of genetically diverse races of the fungus Puccinia striiformis f. sp. tritici. Theoretical and Applied Genetics, 2022, 135, 301-319.	1.8	16
3	The evolving battle between yellow rust and wheat: implications for global food security. Theoretical and Applied Genetics, 2022, 135, 741-753.	1.8	22
4	Genomeâ€wide association mapping of Hagberg falling number, protein content, test weight, and grain yield in U.K. wheat. Crop Science, 2022, 62, 965-981.	0.8	10
5	Stomata on the abaxial and adaxial leaf surfaces contribute differently to leaf gas exchange and photosynthesis in wheat. New Phytologist, 2022, 235, 1743-1756.	3.5	20
6	Septoria Nodorum Blotch of Wheat: Disease Management and Resistance Breeding in the Face of Shifting Disease Dynamics and a Changing Environment. Phytopathology, 2021, 111, 906-920.	1.1	24
7	Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnology Journal, 2021, 19, 26-34.	4.1	65
8	Identification and cross-validation of genetic loci conferring resistance to Septoria nodorum blotch using a German multi-founder winter wheat population. Theoretical and Applied Genetics, 2021, 134, 125-142.	1.8	11
9	Population genomic structure of Eurasian and African foxtail millet landrace accessions inferred from genotypingâ€byâ€sequencing. Plant Genome, 2021, 14, e20081.	1.6	14
10	Wheat genomics and breeding: bridging the gap , 2021, 2021, .		9
11	Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24, WAPO-A1, WAPO-B1 and genetic loci on chromosomes 5A and 6A. Theoretical and Applied Genetics, 2021, 134, 1435-1454.	1.8	20
12	Identification of Fusarium head blight resistance loci in two Brazilian wheat mapping populations. PLoS ONE, 2021, 16, e0248184.	1.1	7
13	Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics, 2021, 134, 1645-1662.	1.8	74
14	Hidden in plain sight: a molecular field survey of three wheat leaf blotch fungal diseases in North-Western Europe shows co-infection is widespread. European Journal of Plant Pathology, 2021, 160, 949-962.	0.8	9
15	Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding. Genome Biology, 2021, 22, 137.	3.8	39
16	Effects of breeding history and crop management on the root architecture of wheat. Plant and Soil, 2020, 452, 587-600.	1.8	42
17	Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.	13.7	513
18	Genetic Analysis Using a Multi-Parent Wheat Population Identifies Novel Sources of Septoria Tritici Blotch Resistance. Genes, 2020, 11, 887.	1.0	19

JAMES COCKRAM

#	Article	IF	CITATIONS
19	Is plant variety registration keeping pace with speed breeding techniques?. Euphytica, 2020, 216, 1.	0.6	12
20	Dissecting the genetic basis of wheat blast resistance in the Brazilian wheat cultivar BR 18-Terena. BMC Plant Biology, 2020, 20, 398.	1.6	30
21	Genetic Characterization of a Wheat Association Mapping Panel Relevant to Brazilian Breeding Using a High-Density Single Nucleotide Polymorphism Array. G3: Genes, Genomes, Genetics, 2020, 10, 2229-2239.	0.8	12
22	CRISPR/Cas9 Gene Editing of Gluten in Wheat to Reduce Gluten Content and Exposure—Reviewing Methods to Screen for Coeliac Safety. Frontiers in Nutrition, 2020, 7, 51.	1.6	59
23	Genetic Structure of the Norwegian Parastagonospora nodorum Population. Frontiers in Microbiology, 2020, 11, 1280.	1.5	11
24	Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity, 2020, 125, 396-416.	1.2	124
25	Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Theoretical and Applied Genetics, 2020, 133, 785-808.	1.8	48
26	Genetic analysis of wheat sensitivity to the ToxB fungal effector from Pyrenophora tritici-repentis, the causal agent of tan spot. Theoretical and Applied Genetics, 2020, 133, 935-950.	1.8	31
27	Use of genetic markers for the detection of off-types for DUS phenotypic traits in the inbreeding crop, barley. Molecular Breeding, 2020, 40, 1.	1.0	16
28	A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. ELife, 2020, 9, .	2.8	78
29	Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of α- and γ-gliadin gene families. BMC Plant Biology, 2019, 19, 333.	1.6	75
30	Genotypic, Developmental and Environmental Effects on the Rapidity of gs in Wheat: Impacts on Carbon Gain and Water-Use Efficiency. Frontiers in Plant Science, 2019, 10, 492.	1.7	29
31	Development of the GlutEnSeq capture system for sequencing gluten gene families in hexaploid bread wheat with deletions or mutations induced by γ-irradiation or CRISPR/Cas9. Journal of Cereal Science, 2019, 88, 157-166.	1.8	28
32	Insights into deployment of DNA markers in plant variety protection and registration. Theoretical and Applied Genetics, 2019, 132, 1911-1929.	1.8	56
33	A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders. PLoS Biology, 2019, 17, e3000071.	2.6	71
34	μ CT trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relatives. Plant Journal, 2019, 99, 98-111.	2.8	19
35	Genetic Dissection of Resistance to the Three Fungal Plant Pathogens Blumeria graminis, Zymoseptoria tritici, and Pyrenophora tritici-repentis Using a Multiparental Winter Wheat Population. G3: Genes, Genomes, Genetics, 2019, 9, 1745-1757.	0.8	26
36	Genetic Mapping Populations for Conducting High-Resolution Trait Mapping in Plants. Advances in Biochemical Engineering/Biotechnology, 2018, 164, 109-138.	0.6	64

JAMES COCKRAM

#	Article	lF	CITATIONS
37	<i>TEOSINTE BRANCHED1</i> Regulates Inflorescence Architecture and Development in Bread Wheat (<i>Triticum aestivum</i>). Plant Cell, 2018, 30, 563-581.	3.1	215
38	Food processing and breeding strategies for coeliac-safe and healthy wheat products. Food Research International, 2018, 110, 11-21.	2.9	35
39	Assessing European Wheat Sensitivities to Parastagonospora nodorum Necrotrophic Effectors and Fine-Mapping the Snn3-B1 Locus Conferring Sensitivity to the Effector SnTox3. Frontiers in Plant Science, 2018, 9, 881.	1.7	48
40	Barley heads east: Genetic analyses reveal routes of spread through diverse Eurasian landscapes. PLoS ONE, 2018, 13, e0196652.	1.1	54
41	Systematic Investigation of FLOWERING LOCUS T-Like Poaceae Gene Families Identifies the Short-Day Expressed Flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2016, 7, 857.	1.7	37
42	Global agricultural intensification during climate change: a role for genomics. Plant Biotechnology Journal, 2016, 14, 1095-1098.	4.1	221
43	The trans-Eurasian crop exchange in prehistory: Discerning pathways from barley phylogeography. Quaternary International, 2016, 426, 26-32.	0.7	19
44	Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science, 2015, 6, 563.	1.7	243
45	Molecular and phenotypic characterization of the alternative seasonal growth habit and flowering time in barley (Hordeum vulgare ssp. vulgare L.). Molecular Breeding, 2015, 35, 1.	1.0	16
46	Fine-Mapping the Wheat <i>Snn1</i> Locus Conferring Sensitivity to the <i>Parastagonospora nodorum</i> Necrotrophic Effector SnTox1 Using an Eight Founder Multiparent Advanced Generation Inter-Cross Population. G3: Genes, Genomes, Genetics, 2015, 5, 2257-2266.	0.8	38
47	Discovery, evaluation and distribution of haplotypes and new alleles of the Photoperiod-A1 gene in wheat. Plant Molecular Biology, 2015, 88, 149-164.	2.0	17
48	The New Wheat Vernalization Response Allele Vrn-D1s is Caused by DNA Transposon Insertion in the First Intron. Plant Molecular Biology Reporter, 2015, 33, 294-303.	1.0	28
49	Genetic diversity in Vicia faba L. populations cultivated in Tunisia revealed by simple sequence repeat analysis. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, 278-285.	0.4	7
50	An Eight-Parent Multiparent Advanced Generation Inter-Cross Population for Winter-Sown Wheat: Creation, Properties, and Validation. G3: Genes, Genomes, Genetics, 2014, 4, 1603-1610.	0.8	215
51	Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theoretical and Applied Genetics, 2014, 127, 2619-2633.	1.8	100
52	Molecular genetic analysis of cereal β-amylase genes using exon-primed intron-crossing (EPIC) PCR. Ratarstvo I Povrtarstvo, 2014, 51, 175-189.	0.6	1
53	Evaluation of the use of high-density SNP genotyping to implement UPOV Model 2 for DUS testing in barley. Theoretical and Applied Genetics, 2013, 126, 901-911.	1.8	30
54	Variety Protection and Plant Breeders' Rights in the â€~DNA Era'. , 2013, , 369-402.		5

JAMES COCKRAM

#	Article	IF	CITATIONS
55	Analysis of DNA polymorphism in ancient barley herbarium material: Validation of the KASP SNP genotyping platform. Taxon, 2013, 62, 779-789.	0.4	21
56	Flowering Time. , 2013, , 1-66.		26
57	Screening a diverse collection of <i>Artemisia annua</i> germplasm accessions for the antimalarial compound, artemisinin. Plant Genetic Resources: Characterisation and Utilisation, 2012, 10, 152-154.	0.4	17
58	Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.). Theoretical and Applied Genetics, 2012, 125, 1735-1749.	1.8	42
59	Genome Dynamics Explain the Evolution of Flowering Time CCT Domain Gene Families in the Poaceae. PLoS ONE, 2012, 7, e45307.	1.1	93
60	Molecular, phylogenetic and comparative genomic analysis of the <i>cytokinin oxidase/dehydrogenase</i> gene family in the Poaceae. Plant Biotechnology Journal, 2012, 10, 67-82.	4.1	47
61	Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theoretical and Applied Genetics, 2012, 124, 233-246.	1.8	122
62	Evolutionary history of barley cultivation in Europe revealed by genetic analysis of extant landraces. BMC Evolutionary Biology, 2011, 11, 320.	3.2	50
63	Genetic variation at flowering time loci in wild and cultivated barley. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 264-267.	0.4	26
64	Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21611-21616.	3.3	259
65	Segmental chromosomal duplications harbouring group IV CONSTANS-like genes in cereals. Genome, 2010, 53, 231-240.	0.9	17
66	Whole-genome association mapping in elite inbred crop varietiesThis article is one of a selection of papers from the conference "Exploiting Genome-wide Association in Oilseed Brassicas: a model for genetic improvement of major OECD crops for sustainable farmingâ€. Genome, 2010, 53, 967-972.	0.9	22
67	PCRâ€Based Markers Diagnostic for Spring and Winter Seasonal Growth Habit in Barley. Crop Science, 2009, 49, 403-410.	0.8	45
68	Association mapping of partitioning loci in barley. BMC Genetics, 2008, 9, 16.	2.7	75
69	Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. Journal of Experimental Botany, 2007, 58, 1231-1244.	2.4	422
70	The Role of Double-Stranded Break Repair in the Creation of Phenotypic Diversity at Cereal <i>VRN1</i> Loci. Genetics, 2007, 177, 2535-2539.	1.2	37
71	Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theoretical and Applied Genetics, 2007, 115, 993-1001.	1.8	139
72	Comparative genetic approaches to the identification of flowering time genes in temperate cereals. Field Crops Research, 2004, 90, 87-99.	2.3	59

#	Article	IF	CITATIONS
73	Capturing Wheat Phenotypes at the Genome Level. Frontiers in Plant Science, 0, 13, .	1.7	8