Anna Bonavita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/288088/publications.pdf

Version: 2024-02-01

64 papers 2,870 citations

33 h-index 53 g-index

65 all docs

65 docs citations

65 times ranked 3729 citing authors

#	Article	IF	CITATIONS
1	Electrochemical Sensing of Serotonin by a Modified MnO2-Graphene Electrode. Biosensors, 2020, 10, 33.	4.7	21
2	Ammonia sensing properties of two-dimensional tin disulphide/tin oxides (SnS2/SnO2-x) mixed phases. Journal of Alloys and Compounds, 2019, 781, 440-449.	5 . 5	28
3	Development of a hydrogen dual sensor for fuel cell applications. International Journal of Hydrogen Energy, 2018, 43, 11896-11902.	7.1	20
4	Nonâ€enzymatic Glucose Sensor Based on Nickel/Carbon Composite. Electroanalysis, 2018, 30, 727-733.	2.9	48
5	CO ₂ sensing properties of electro-spun Ca-doped ZnO fibres. Nanotechnology, 2018, 29, 305501.	2.6	24
6	Sunflower pollen-assisted synthesis of nanosized semiconducting ZnO and its application in the selective sensing of NO2. Journal of Materials Science: Materials in Electronics, 2018, 29, 11096-11103.	2.2	0
7	LaFeO3 ceramics as selective oxygen sensors at mild temperature. Ceramics International, 2018, 44, 4183-4189.	4.8	60
8	CO sensing characteristics of In-doped ZnO semiconductor nanoparticles. Journal of Science: Advanced Materials and Devices, 2017, 2, 34-40.	3.1	37
9	In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. Mikrochimica Acta, 2017, 184, 2375-2385.	5.0	48
10	Enhanced performance of novel calcium/aluminum co-doped zinc oxide for CO 2 sensors. Sensors and Actuators B: Chemical, 2017, 239, 36-44.	7.8	88
11	Effect of gamma irradiation on structural, electrical and gas sensing properties of tungsten oxide nanoparticles. Journal of Alloys and Compounds, 2017, 693, 366-372.	5.5	42
12	A comparative study on the electrical and gas sensing properties of thick films prepared with synthesized nano-sized and commercial micro-sized Fe2O3 powders. Processing and Application of Ceramics, 2017, 11, 265-274.	0.8	3
13	Two-Dimensional (2D) SnS 2 -based Oxygen Sensor. Procedia Engineering, 2016, 168, 1102-1105.	1.2	37
14	Origin of the different behavior of some platinum decorated nanocarbons towards the electrochemical oxidation of hydrogen peroxide. Materials Chemistry and Physics, 2016, 184, 269-278.	4.0	14
15	Investigations on the effect of gamma-ray irradiation on the gas sensing properties of SnO ₂ nanoparticles. Nanotechnology, 2016, 27, 385502.	2.6	26
16	A novel disposable electrochemical sensor for determination of carbamazepine based on Fe doped SnO2 nanoparticles modified screen-printed carbon electrode. Materials Science and Engineering C, 2016, 62, 53-60.	7.3	45
17	Characterisation and H $_2$ O $_2$ sensing properties of TiO $_2$ -CNTs/Pt electro-catalysts. Materials Chemistry and Physics, 2016, 170, 129-137.	4.0	22
18	Gas sensing properties of Al-doped ZnO for UV-activated CO detection. Journal Physics D: Applied Physics, 2016, 49, 135502.	2.8	54

#	Article	IF	CITATIONS
19	Microwave-assisted synthesis of Cd(OH)2/CdO nanorods: Effect of irradiation time. Superlattices and Microstructures, 2016, 90, 117-123.	3.1	8
20	Synthesis and characterization of mesoporous α-Fe2O3 nanoparticles and investigation of electrical properties of fabricated thick films. Processing and Application of Ceramics, 2016, 10, 209-217.	0.8	60
21	Electrochemical Properties of Ag@iron Oxide Nanocomposite for Application as Nitrate Sensor. Electroanalysis, 2015, 27, 2654-2662.	2.9	17
22	ZnO:Ca nanopowders with enhanced CO ₂ sensing properties. Journal Physics D: Applied Physics, 2015, 48, 255503.	2.8	68
23	CO sensing properties of Ga-doped ZnO prepared by sol–gel route. Journal of Alloys and Compounds, 2015, 634, 187-192.	5.5	62
24	Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites. Nanomaterials, 2015, 5, 737-749.	4.1	102
25	Structural, morphological and optical properties of Bi-doped ZnO nanoparticles synthesized by a microwave irradiation method. Journal of Materials Science: Materials in Electronics, 2015, 26, 4913-4921.	2.2	42
26	Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2015, 221, 1412-1422.	7.8	99
27	Microwave irradiated Sn-substituted CdO nanostructures for enhanced CO2 sensing. Ceramics International, 2015, 41, 14766-14772.	4.8	35
28	CO sensing properties under UV radiation of Ga-doped ZnO nanopowders. Applied Surface Science, 2015, 355, 1321-1326.	6.1	48
29	Effect of Ga-doping and UV Radiation on High Performance CO Sensing of ZnO Nano-powders. Procedia Engineering, 2014, 87, 1079-1082.	1.2	3
30	Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sensors and Actuators B: Chemical, 2010, 145, 488-494.	7.8	106
31	Gasochromic response of nanocrystalline vanadium pentoxide films deposited from ethanol dispersions. Thin Solid Films, 2010, 518, 7124-7127.	1.8	31
32	Flexible, all-organic ammonia sensor based on dodecylbenzene sulfonic acid-doped polyaniline films. Thin Solid Films, 2010, 518, 7133-7137.	1.8	41
33	Influence of processing parameters on the electrical response of screen printed SrFe0.6Ti0.4O3â°Î thick films. Ceramics International, 2010, 36, 521-527.	4.8	18
34	Design and Development of a Breath Acetone MOS Sensor for Ketogenic Diets Control. IEEE Sensors Journal, 2010, 10, 131-136.	4.7	31
35	Micro-Raman analysis of titanium oxide/carbon nanotubes-based nanocomposites for hydrogen sensing applications. Journal of Solid State Chemistry, 2010, 183, 2451-2455.	2.9	44
36	RF sputtered ZnO–ITO films for high temperature CO sensors. Thin Solid Films, 2009, 517, 6184-6187.	1.8	17

3

#	Article	IF	CITATIONS
37	CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route. Sensors and Actuators B: Chemical, 2009, 143, 198-204.	7.8	122
38	The controlled deposition of metal oxides onto carbon nanotubes by atomic layer deposition: examples and a case study on the application of V2O4 coated nanotubes in gas sensing. Physical Chemistry Chemical Physics, 2009, 11, 3615.	2.8	54
39	Tailoring the Structural and Microstructural Properties of Nanosized Tantalum Oxide for High Temperature Electrochemical Gas Sensors. Journal of Nanoscience and Nanotechnology, 2009, 9, 4430-4436.	0.9	1
40	Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol–gel process for automotive applications. Sensors and Actuators B: Chemical, 2008, 132, 224-233.	7.8	172
41	FeSrTiO3-based resistive oxygen sensors for application in diesel engines. Sensors and Actuators B: Chemical, 2008, 134, 647-653.	7.8	27
42	Effect of the chemical composition on the sensing properties of In2O3–SnO2 nanoparticles synthesized by a non-aqueous method. Sensors and Actuators B: Chemical, 2008, 130, 222-230.	7.8	81
43	A dirhodium(II,II) molecular species as a candidate material for resistive carbon monoxide gas sensors. Sensors and Actuators B: Chemical, 2008, 129, 772-778.	7.8	15
44	Vanadium Oxide Sensing Layer Grown on Carbon Nanotubes by a New Atomic Layer Deposition Process. Nano Letters, 2008, 8, 4201-4204.	9.1	103
45	Tungsten Oxide Nanowires-Based Ammonia Gas Sensors. Sensor Letters, 2008, 6, 590-595.	0.4	17
46	A study on the microstructure and gas sensing properties of ITO nanocrystals. Thin Solid Films, 2007, 515, 8637-8640.	1.8	19
47	Pd- and Ca-doped iron oxide for ethanol vapor sensing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 139, 41-47.	3.5	34
48	Towards enhanced performances in gas sensing: SnO2 based nanocrystalline oxides application. Sensors and Actuators B: Chemical, 2007, 122, 564-571.	7.8	46
49	Resistive λ-sensors based on ball milled Fe-doped SrTiO3 nanopowders obtained by self-propagating high-temperature synthesis (SHS). Sensors and Actuators B: Chemical, 2007, 126, 258-265.	7.8	25
50	In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sensors and Actuators B: Chemical, 2007, 127, 455-462.	7.8	89
51	Methanol gas-sensing properties of CeO2–Fe2O3 thin films. Sensors and Actuators B: Chemical, 2006, 114, 687-695.	7.8	98
52	Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion. Sensors and Actuators B: Chemical, 2006, 117 , $196-204$.	7.8	93
53	Alternative Sol-Gel Routes for Synthesizing Gas Sensing Nanostructured Materials. ECS Transactions, 2006, 3, 221-231.	0.5	5
54	Investigation of Permeation Tubes for Temperature-Compensated Gas-Sensor Calibrators. IEEE Sensors Journal, 2006, 6, 1120-1125.	4.7	7

#	Article	IF	CITATION
55	A highly sensitive oxygen sensor operating at room temperature based on platinum-doped In2O3 nanocrystals. Chemical Communications, 2005, , 6032.	4.1	71
56	A study of water influence on CO response on gold-doped iron oxide sensors. Sensors and Actuators B: Chemical, 2004, 101, 90-96.	7.8	31
57	Low temperature sol-gel synthesis and humidity sensing properties of Cr2â^xTixO3. Journal of the European Ceramic Society, 2004, 24, 1435-1438.	5.7	11
58	Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors. Sensors and Actuators B: Chemical, 2003, 93, 402-408.	7.8	49
59	Gold promoted Li–Fe2O3 thin films for humidity sensors. Sensors and Actuators B: Chemical, 2003, 92, 326-330.	7.8	32
60	O/sub 2/ sensing properties of Zn- and Au-doped Fe/sub 2/O/sub 3/ thin films. IEEE Sensors Journal, 2003, 3, 195-198.	4.7	14
61	CO and NO2 sensing properties of doped-Fe2O3 thin films prepared by LPD. Sensors and Actuators B: Chemical, 2002, 82, 40-47.	7.8	123
62	Preparation, characterization and CO sensing of $Au/iron$ oxide thin films. Journal of Materials Science: Materials in Electronics, 2002, 13, 561-565.	2.2	13
63	HREELS study of Au/Fe2O3 thick film gas sensors. Sensors and Actuators B: Chemical, 2001, 80, 222-228.	7.8	24
64	Humidity sensing properties of Li–iron oxide based thin films. Sensors and Actuators B: Chemical, 2001, 73, 89-94.	7.8	43