
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2880548/publications.pdf Version: 2024-02-01

IENNIEED R CRANDIS

#	Article	IF	CITATIONS
1	Mentoring Relationships and Gender Inequities in Academic Medicine: Findings From a Multi-Institutional Qualitative Study. Academic Medicine, 2022, 97, 136-142.	0.8	11
2	NSAIDs Overcome PIK3CA Mutation-Mediated Resistance to EGFR Inhibition in Head and Neck Cancer Preclinical Models. Cancers, 2022, 14, 506.	1.7	4
3	Networking practices and gender inequities in academic medicine: Women's and men's perspectives. EClinicalMedicine, 2022, 45, 101338.	3.2	2
4	Gender Equity in Science and Medicine: Breaking the Impasse. Cancer Discovery, 2022, 12, 1191-1194.	7.7	1
5	Targeting STAT3 with Proteolysis Targeting Chimeras and Next-Generation Antisense Oligonucleotides. Molecular Cancer Therapeutics, 2021, 20, 219-228.	1.9	10
6	CYLD Alterations in the Tumorigenesis and Progression of Human Papillomavirus–Associated Head and Neck Cancers. Molecular Cancer Research, 2021, 19, 14-24.	1.5	14
7	The Mutational Landscape of Head and Neck Squamous Cell Carcinoma: Opportunities for Detection and Monitoring Via Analysis of Circulating Tumor DNA. , 2021, , 107-122.		1
8	Disruption of the HER3-PI3K-mTOR oncogenic signaling axis and PD-1 blockade as a multimodal precision immunotherapy in head and neck cancer. Nature Communications, 2021, 12, 2383.	5.8	39
9	IGF2 Mediates Resistance to Isoform-Selective-Inhibitors of the PI3K in HPV Positive Head and Neck Cancer. Cancers, 2021, 13, 2250.	1.7	8
10	Treatment of Fanconi Anemia–Associated Head and Neck Cancer: Opportunities to Improve Outcomes. Clinical Cancer Research, 2021, 27, 5168-5187.	3.2	18
11	PD-1 ⁺ CXCR5 ^{â^'} CD4 ⁺ Th-CXCL13 cell subset drives B cells into tertiary lymphoid structures of nasopharyngeal carcinoma. , 2021, 9, e002101.		30
12	Caspase-8 mutations associated with head and neck cancer differentially retain functional properties related to TRAIL-induced apoptosis and cytokine induction. Cell Death and Disease, 2021, 12, 775.	2.7	10
13	PDâ€L1 is upregulated via BRD2 in head and neck squamous cell carcinoma models of acquired cetuximab resistance. Head and Neck, 2021, 43, 3364-3373.	0.9	7
14	Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobialâ€based therapeutics. Periodontology 2000, 2021, 87, 76-93.	6.3	28
15	Caveolin-1 and Sox-2 are predictive biomarkers of cetuximab response in head and neck cancer. JCI Insight, 2021, 6, .	2.3	10
16	Women's Experiences of Promotion and Tenure in Academic Medicine and Potential Implications for Gender Disparities in Career Advancement. JAMA Network Open, 2021, 4, e2125843.	2.8	33
17	A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity. Science, 2021, 374, eabf2911.	6.0	37
18	Head and Neck Cancer among American Indian and Alaska Native Populations in California, 2009–2018. Cancers, 2021, 13, 5195.	1.7	3

#	Article	IF	CITATIONS
19	Therapeutic implications of activating noncanonical PIK3CA mutations in head and neck squamous cell carcinoma. Journal of Clinical Investigation, 2021, 131, .	3.9	20
20	NSAID therapy for PIK3CA-Altered colorectal, breast, and head and neck cancer. Advances in Biological Regulation, 2020, 75, 100653.	1.4	25
21	Interleukin 6 is increased in preclinical HNSCC models of acquired cetuximab resistance, but is not required for maintenance of resistance. PLoS ONE, 2020, 15, e0227261.	1.1	6
22	Head and neck squamous cell carcinoma. Nature Reviews Disease Primers, 2020, 6, 92.	18.1	1,649
23	Pathway-Specific Genome Editing of PI3K/mTOR Tumor Suppressor Genes Reveals that <i>PTEN</i> Loss Contributes to Cetuximab Resistance in Head and Neck Cancer. Molecular Cancer Therapeutics, 2020, 19, 1562-1571.	1.9	17
24	Phase I Study of Ficlatuzumab and Cetuximab in Cetuximab-Resistant, Recurrent/Metastatic Head and Neck Cancer. Cancers, 2020, 12, 1537.	1.7	19
25	Alterations and molecular targeting of the GSK-3 regulator, PI3K, in head and neck cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118679.	1.9	14
26	STAT3 decoy oligonucleotide-carrying microbubbles with pulsed ultrasound for enhanced therapeutic effect in head and neck tumors. PLoS ONE, 2020, 15, e0242264.	1.1	11
27	Targeting the JAK/STAT pathway in solid tumors. Journal of Cancer Metastasis and Treatment, 2020, 6, .	0.5	21
28	Title is missing!. , 2020, 15, e0227261.		0
29	Title is missing!. , 2020, 15, e0227261.		Ο
30	Title is missing!. , 2020, 15, e0227261.		0
31	Title is missing!. , 2020, 15, e0227261.		Ο
32	Targeting Members of the Epidermal Growth Factor Receptor Family to Improve Response to Chemotherapy. , 2019, , 1-23.		0
33	Molecular and Clinical Activity of CDX-3379, an Anti-ErbB3 Monoclonal Antibody, in Head and Neck Squamous Cell Carcinoma Patients. Clinical Cancer Research, 2019, 25, 5752-5758.	3.2	24
34	ATR inhibition sensitizes HPVâ^' and HPV+ head and neck squamous cell carcinoma to cisplatin. Oral Oncology, 2019, 95, 35-42.	0.8	34
35	Targeting STAT3 in Cancer with Nucleotide Therapeutics. Cancers, 2019, 11, 1681.	1.7	32
36	Use of nonsteroidal anti-inflammatory drugs predicts improved patient survival for <i>PIK3CA</i> -altered head and neck cancer. Journal of Experimental Medicine, 2019, 216, 419-427.	4.2	46

#	Article	IF	CITATIONS
37	HER3 targeting potentiates growth suppressive effects of the PI3K inhibitor BYL719 in pre-clinical models of head and neck squamous cell carcinoma. Scientific Reports, 2019, 9, 9130.	1.6	14
38	Investigational multitargeted kinase inhibitors in development for head and neck neoplasms. Expert Opinion on Investigational Drugs, 2019, 28, 351-363.	1.9	14
39	APOBEC-induced mutations and their cancer effect size in head and neck squamous cell carcinoma. Oncogene, 2019, 38, 3475-3487.	2.6	81
40	Overexpression-mediated activation of MET in the Golgi promotes HER3/ERBB3 phosphorylation. Oncogene, 2019, 38, 1936-1950.	2.6	23
41	Gene targets of sulforaphane in head and neck squamous cell carcinoma. Molecular Medicine Reports, 2019, 20, 5335-5344.	1.1	6
42	New Therapies in Head and Neck Cancer. Trends in Cancer, 2018, 4, 385-396.	3.8	50
43	Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature Reviews Clinical Oncology, 2018, 15, 234-248.	12.5	1,789
44	Cross-talk Signaling between HER3 and HPV16 E6 and E7 Mediates Resistance to PI3K Inhibitors in Head and Neck Cancer. Cancer Research, 2018, 78, 2383-2395.	0.4	31
45	Therapeutic Implications of the Genetic Landscape of Head and Neck Cancer. Seminars in Radiation Oncology, 2018, 28, 2-11.	1.0	23
46	The <i>RARS–MAD1L1</i> Fusion Gene Induces Cancer Stem Cell–like Properties and Therapeutic Resistance in Nasopharyngeal Carcinoma. Clinical Cancer Research, 2018, 24, 659-673.	3.2	47
47	Analysis of oncogenic activities of protein kinase D1 in head and neck squamous cell carcinoma. BMC Cancer, 2018, 18, 1107.	1.1	12
48	Biochemical Properties of a Decoy Oligodeoxynucleotide Inhibitor of STAT3 Transcription Factor. International Journal of Molecular Sciences, 2018, 19, 1608.	1.8	11
49	Phase 1 study of EGFRâ€antisense DNA, cetuximab, and radiotherapy in head and neck cancer with preclinical correlatives. Cancer, 2018, 124, 3881-3889.	2.0	8
50	An update: emerging drugs to treat squamous cell carcinomas of the head and neck. Expert Opinion on Emerging Drugs, 2018, 23, 283-299.	1.0	44
51	Multiple Routes to Oncogenesis Are Promoted by the Human Papillomavirus–Host Protein Network. Cancer Discovery, 2018, 8, 1474-1489.	7.7	67
52	BET Inhibition Overcomes Receptor Tyrosine Kinase–Mediated Cetuximab Resistance in HNSCC. Cancer Research, 2018, 78, 4331-4343.	0.4	66
53	STAT3 Cyclic Decoy Demonstrates Robust Antitumor Effects in Non–Small Cell Lung Cancer. Molecular Cancer Therapeutics, 2018, 17, 1917-1926.	1.9	30
54	Jak/STAT Signaling in Head and Neck Cancer. Current Cancer Research, 2018, , 155-184.	0.2	3

#	Article	IF	CITATIONS
55	Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations. Nature Communications, 2017, 8, 14121.	5.8	227
56	Nonpromoter methylation of the CDKN2A gene with active transcription is associated with improved locoregional control in laryngeal squamous cell carcinoma. Cancer Medicine, 2017, 6, 397-407.	1.3	13
57	Mechanism of action of selective inhibitors of IL-6 induced STAT3 pathway in head and neck cancer cell lines. Journal of Chemical Biology, 2017, 10, 129-141.	2.2	10
58	Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in <i>RAS</i> mutant cancers. Science Translational Medicine, 2017, 9, .	5.8	174
59	A watershed year for improvements in treatment?. Nature Reviews Clinical Oncology, 2017, 14, 76-78.	12.5	20
60	Spot the difference. Nature, 2017, 541, 162-163.	13.7	9
61	Human Papillomavirus Regulates HER3 Expression in Head and Neck Cancer: Implications for Targeted HER3 Therapy in HPV+ Patients. Clinical Cancer Research, 2017, 23, 3072-3083.	3.2	45
62	Prognostic biomarkers in patients with human immunodeficiency virusâ€positive disease with head and neck squamous cell carcinoma. Head and Neck, 2017, 39, 2433-2443.	0.9	5
63	EGFR-targeted therapies in the post-genomic era. Cancer and Metastasis Reviews, 2017, 36, 463-473.	2.7	182
64	Abstract 4101: Targeting the EGFR/STAT3 axis in NSCLC with resistance to EGFR tyrosine kinase inhibitors using an oligonucleotide-based decoy. , 2017, , .		2
65	Randomized, placebo-controlled window trial of EGFR, Src, or combined blockade in head and neck cancer. JCI Insight, 2017, 2, e90449.	2.3	45
66	Phase II trial of everolimus in patients with previously treated recurrent or metastatic head and neck squamous cell carcinoma. Head and Neck, 2016, 38, 1759-1764.	0.9	50
67	HGF/Met Signaling in Head and Neck Cancer: Impact on the Tumor Microenvironment. Clinical Cancer Research, 2016, 22, 4005-4013.	3.2	75
68	New Strategies in Esophageal Carcinoma: Translational Insights from Signaling Pathways and Immune Checkpoints. Clinical Cancer Research, 2016, 22, 4283-4290.	3.2	29
69	HER2 and HER3 in HPV+ and HPVâ^' HNSCC—Response. Clinical Cancer Research, 2016, 22, 1826-1826.	3.2	1
70	Treatment of head and neck cancer in the elderly. Expert Opinion on Pharmacotherapy, 2016, 17, 1903-1921.	0.9	15
71	Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer. Nature Genetics, 2016, 48, 1544-1550.	9.4	164
72	Toxicity, pharmacokinetics and metabolism of a novel inhibitor of IL-6-induced STAT3 activation. Cancer Chemotherapy and Pharmacology, 2016, 78, 1225-1235.	1.1	7

#	Article	IF	CITATIONS
73	Optimization of pyrazole-containing 1,2,4-triazolo-[3,4-b]thiadiazines, a new class of STAT3 pathway inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3581-3585.	1.0	27
74	Prevention of Carcinogen-Induced Oral Cancer by Sulforaphane. Cancer Prevention Research, 2016, 9, 547-557.	0.7	77
75	STAT3 as a Chemoprevention Target in Carcinogen-Induced Head and Neck Squamous Cell Carcinoma. Cancer Prevention Research, 2016, 9, 657-663.	0.7	12
76	A Young Man With Chronic Discharge From the Skin of the Lateral Neck. JAMA Otolaryngology - Head and Neck Surgery, 2016, 142, 99.	1.2	1
77	Proteomic Characterization of Head and Neck Cancer Patient–Derived Xenografts. Molecular Cancer Research, 2016, 14, 278-286.	1.5	48
78	The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncology, 2016, 56, 84-92.	0.8	141
79	Oral Cancer Chemoprevention—The End of EPOC, the Beginning of an Epoch of Molecular Selection. JAMA Oncology, 2016, 2, 178.	3.4	14
80	HPV-Associated Head and Neck Cancer: Unique Features of Epidemiology and Clinical Management. Annual Review of Medicine, 2016, 67, 91-101.	5.0	97
81	Genomic and Transcriptomic Alterations Associated with STAT3 Activation in Head and Neck Cancer. PLoS ONE, 2016, 11, e0166185.	1.1	4
82	MAPK1E322K mutation increases head and neck squamous cell carcinoma sensitivity to erlotinib through enhanced secretion of amphiregulin. Oncotarget, 2016, 7, 23300-23311.	0.8	8
83	The non-coding landscape of head and neck squamous cell carcinoma. Oncotarget, 2016, 7, 51211-51222.	0.8	53
84	A sensible approach to targeting STAT3-mediated transcription. Annals of Translational Medicine, 2016, 4, S57-S57.	0.7	0
85	MicroRNA-363 targets myosin 1B to reduce cellular migration in head and neck cancer. BMC Cancer, 2015, 15, 861.	1.1	34
86	Ultrasound Targeted Microbubble Destruction-Mediated Delivery of a Transcription Factor Decoy Inhibits STAT3 Signaling and Tumor Growth. Theranostics, 2015, 5, 1378-1387.	4.6	51
87	Challenges in EGFRvIII Detection in Head and Neck Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0117781.	1.1	16
88	Loss-of-Function PTPRD Mutations Lead to Increased STAT3 Activation and Sensitivity to STAT3 Inhibition in Head and Neck Cancer. PLoS ONE, 2015, 10, e0135750.	1.1	51
89	Therapeutic Insights from Genomic Studies of Head and Neck Squamous Cell Carcinomas. Cancer Discovery, 2015, 5, 239-244.	7.7	80
90	ldentification of epidermal growth factor receptor (EGFR) genetic variants that modify risk for head and neck squamous cell carcinoma. Cancer Letters, 2015, 357, 549-556.	3.2	16

#	Article	IF	CITATIONS
91	JAK Kinase Inhibition Abrogates STAT3 Activation and Head and Neck Squamous Cell Carcinoma Tumor Growth. Neoplasia, 2015, 17, 256-264.	2.3	59
92	Emerging drugs for head and neck cancer. Expert Opinion on Emerging Drugs, 2015, 20, 313-329.	1.0	39
93	HCS Campaign to Identify Selective Inhibitors of IL-6-Induced STAT3 Pathway Activation in Head and Neck Cancer Cell Lines. Assay and Drug Development Technologies, 2015, 13, 356-376.	0.6	24
94	Increased Expression of HER2, HER3, and HER2:HER3 Heterodimers in HPV-Positive HNSCC Using a Novel Proximity-Based Assay: Implications for Targeted Therapies. Clinical Cancer Research, 2015, 21, 4597-4606.	3.2	45
95	Genomic Correlate of Exceptional Erlotinib Response in Head and Neck Squamous Cell Carcinoma. JAMA Oncology, 2015, 1, 238.	3.4	44
96	HER2 as a Therapeutic Target in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2015, 21, 526-533.	3.2	77
97	STAT3 Oligonucleotide Inhibits Tumor Angiogenesis in Preclinical Models of Squamous Cell Carcinoma. PLoS ONE, 2014, 9, e81819.	1.1	22
98	Quantifying Metabolic Heterogeneity in Head and Neck Tumors in Real Time: 2-DG Uptake Is Highest in Hypoxic Tumor Regions. PLoS ONE, 2014, 9, e102452.	1.1	25
99	Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery. PLoS ONE, 2014, 9, e102678.	1.1	50
100	Systemic Administration of a Cyclic Signal Transducer and Activator of Transcription 3 (STAT3) Decoy Oligonucleotide Inhibits Tumor Growth without Inducing Toxicological Effects. Molecular Medicine, 2014, 20, 46-56.	1.9	34
101	Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1114-1119.	3.3	86
102	High-Content pSTAT3/1 Imaging Assays to Screen for Selective Inhibitors of STAT3 Pathway Activation in Head and Neck Cancer Cell Lines. Assay and Drug Development Technologies, 2014, 12, 55-79.	0.6	28
103	Characterization of HPV and host genome interactions in primary head and neck cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15544-15549.	3.3	317
104	To "Grow―or "Go― TMEM16A Expression as a Switch between Tumor Growth and Metastasis in SCCHN Clinical Cancer Research, 2014, 20, 4673-4688.	·3.2	86
105	2-Guanidinoquinazolines as new inhibitors of the STAT3 pathway. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5081-5085.	1.0	15
106	Erlotinib, Erlotinib–Sulindac versus Placebo: A Randomized, Double-Blind, Placebo-Controlled Window Trial in Operable Head and Neck Cancer. Clinical Cancer Research, 2014, 20, 3289-3298.	3.2	48
107	Genomic Analysis of Head and Neck Squamous Cell Carcinoma Cell Lines and Human Tumors: A Rational Approach to Preclinical Model Selection. Molecular Cancer Research, 2014, 12, 571-582.	1.5	94
108	Multi-tiered genomic analysis of head and neck cancer ties TP53 mutation to 3p loss. Nature Genetics, 2014, 46, 939-943.	9.4	126

#	Article	IF	CITATIONS
109	Integration of molecular targeted therapy with radiation in head and neck cancer. , 2014, 142, 88-98.		43
110	Single-agent obatoclax (GX15-070) potently induces apoptosis and pro-survival autophagy in head and neck squamous cell carcinoma cells. Oral Oncology, 2014, 50, 120-127.	0.8	20
111	Caspaseâ€8 mutations in head and neck cancer confer resistance to death receptorâ€mediated apoptosis and enhance migration, invasion, and tumor growth. Molecular Oncology, 2014, 8, 1220-1230.	2.1	58
112	Erlotinib, dasatinib, erlotinib-dasatinib versus placebo: A randomized, double-blind window study in operable head and neck squamous cell carcinoma (HNSCC) Journal of Clinical Oncology, 2014, 32, 6033-6033.	0.8	5
113	Phase II trial of radiotherapy (RT) with concurrent cisplatin (C) plus panitumumab (pmAb) for patients (pts) with high-risk, resected head and neck cancer (HNC) Journal of Clinical Oncology, 2014, 32, 6090-6090.	0.8	5
114	Expression of tumor biomarkers in HIV-infected patients with head and neck cancer Journal of Clinical Oncology, 2014, 32, 6086-6086.	0.8	0
115	Prevalence and outcome of mutations (mut) in the Fanconi anemia (FA) DNA repair pathway among head and neck cancer (H&N Ca) patients (pts) Journal of Clinical Oncology, 2014, 32, 6036-6036.	0.8	0
116	Expression of EGFR, VEGF, and NOTCH1 Suggest Differences in Tumor Angiogenesis in HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinoma. Head and Neck Pathology, 2013, 7, 344-355.	1.3	39
117	PIK3CA, HRAS and PTEN in human papillomavirus positive oropharyngeal squamous cell carcinoma. BMC Cancer, 2013, 13, 602.	1.1	56
118	Frequent Mutation of the PI3K Pathway in Head and Neck Cancer Defines Predictive Biomarkers. Cancer Discovery, 2013, 3, 761-769.	7.7	505
119	The Fanconi anemia pathway: Repairing the link between DNA damage and squamous cell carcinoma. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 743-744, 78-88.	0.4	50
120	c-Src Activation Mediates Erlotinib Resistance in Head and Neck Cancer by Stimulating c-Met. Clinical Cancer Research, 2013, 19, 380-392.	3.2	90
121	Critical analysis of the potential for targeting STAT3 in human malignancy. OncoTargets and Therapy, 2013, 6, 999.	1.0	18
122	First-in-Human Trial of a STAT3 Decoy Oligonucleotide in Head and Neck Tumors: Implications for Cancer Therapy. Cancer Discovery, 2012, 2, 694-705.	7.7	260
123	Targeting Stat3 Abrogates EGFR Inhibitor Resistance in Cancer. Clinical Cancer Research, 2012, 18, 4986-4996.	3.2	135
124	Nucleic acid-based approaches to STAT inhibition. Jak-stat, 2012, 1, 285-291.	2.2	29
125	Preclinical modeling of EGFR inhibitor resistance in head and neck cancer. Cancer Biology and Therapy, 2012, 13, 935-945.	1.5	27
126	Dual Kinase Inhibition of EGFR and HER2 Overcomes Resistance to Cetuximab in a Novel <i>In Vivo</i> Model of Acquired Cetuximab Resistance. Clinical Cancer Research, 2011, 17, 5935-5944.	3.2	87

#	Article	IF	CITATIONS
127	The Mutational Landscape of Head and Neck Squamous Cell Carcinoma. Science, 2011, 333, 1157-1160.	6.0	2,225
128	STAT3 SIGNALING: Anticancer Strategies and Challenges. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2011, 11, 18-26.	3.4	350
129	Dual Blockade of EGFR and c-Met Abrogates Redundant Signaling and Proliferation in Head and Neck Carcinoma Cells. Clinical Cancer Research, 2011, 17, 4425-4438.	3.2	106
130	Inhibition of EGFR-STAT3 Signaling with Erlotinib Prevents Carcinogenesis in a Chemically-Induced Mouse Model of Oral Squamous Cell Carcinoma. Cancer Prevention Research, 2011, 4, 230-237.	0.7	55
131	Emerging drugs to treat squamous cell carcinomas of the head and neck. Expert Opinion on Emerging Drugs, 2010, 15, 355-373.	1.0	96
132	Induction Docetaxel, Cisplatin, and Cetuximab Followed by Concurrent Radiotherapy, Cisplatin, and Cetuximab and Maintenance Cetuximab in Patients With Locally Advanced Head and Neck Cancer. Journal of Clinical Oncology, 2010, 28, 5294-5300.	0.8	132
133	Bortezomib up-regulates activated signal transducer and activator of transcription-3 and synergizes with inhibitors of signal transducer and activator of transcription-3 to promote head and neck squamous cell carcinoma cell death. Molecular Cancer Therapeutics, 2009, 8, 2211-2220.	1.9	56
134	Intratumoral Epidermal Growth Factor Receptor Antisense DNA Therapy in Head and Neck Cancer: First Human Application and Potential Antitumor Mechanisms. Journal of Clinical Oncology, 2009, 27, 1235-1242.	0.8	63
135	HGF and c-Met Participate in Paracrine Tumorigenic Pathways in Head and Neck Squamous Cell Cancer. Clinical Cancer Research, 2009, 15, 3740-3750.	3.2	196
136	Lack of toxicity of a STAT3 decoy oligonucleotide. Cancer Chemotherapy and Pharmacology, 2009, 63, 983-995.	1.1	47
137	Targeting Epidermal Growth Factor Receptor and Src Pathways in Head and Neck Cancer. Seminars in Oncology, 2008, 35, 286-297.	0.8	79
138	Established and Emerging Concepts in Epidermal Growth FactorÂReceptor Biology. International Journal of Radiation Oncology Biology Physics, 2007, 69, S22-S24.	0.4	6
139	Head and Neck Cancer: Table 1. Cancer Research, 2004, 64, 8126-8129.	0.4	33
140	The Efficacy of Topical Antibiotic Prophylaxis for Contaminated Head and Neck Surgery. Laryngoscope, 1994, 104, 719???724.	1.1	38
141	TGF-α and EGFR in head and neck cancer. Journal of Cellular Biochemistry, 1993, 53, 188-191.	1.2	100
142	Synergistic enhancement by interleukin-1 ? of cisplatin-mediated antitumor activity in RIF-1 tumor-bearing C3H/HeJ mice. Cancer Chemotherapy and Pharmacology, 1993, 32, 339-346.	1.1	13