Joanna S Stevens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2880517/publications.pdf

Version: 2024-02-01

25 papers 3,576 citations

16 h-index 25 g-index

26 all docs

26 docs citations

26 times ranked 4534 citing authors

#	Article	IF	CITATIONS
1	Colorful 4,4-Bipyridine–Squaric Acid Multicomponent Complexes with Varying Degrees of Proton Transfer: Exploring the Nature of New Form IV in the Salt Co-Crystal Continuum. Crystal Growth and Design, 2022, 22, 779-787.	3.0	1
2	Aromatic Interactions in the Cambridge Structural Database: Comparison of Interaction Geometries and Investigation of Molecular Descriptors as an Indicator of Strong Interactions. Crystal Growth and Design, 2022, 22, 788-802.	3.0	2
3	Fast energy minimization of the CCDC drug-subset structures by molecule-in-cluster computations allows independent structure validation and model completion. CrystEngComm, 2020, 22, 7420-7431.	2.6	5
4	<i>Mercury 4.0</i> : from visualization to analysis, design and prediction. Journal of Applied Crystallography, 2020, 53, 226-235.	4.5	2,598
5	Core level spectroscopies locate hydrogen in the proton transfer pathway – identifying quasi-symmetrical hydrogen bonds in the solid state. Physical Chemistry Chemical Physics, 2020, 22, 4916-4923.	2.8	25
6	Salts, Cocrystals, and Ionic Cocrystals of a "Simple―Tautomeric Compound. Crystal Growth and Design, 2018, 18, 6973-6983.	3.0	32
7	Gel phase nano formulation: The effect of triglycerides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 85-93.	4.7	2
8	Frontispiece: In Situ Solidâ€State Reactions Monitored by Xâ€ray Absorption Spectroscopy: Temperatureâ€Induced Proton Transfer Leads to Chemical Shifts. Chemistry - A European Journal, 2016, 22, .	3.3	0
9	In Situ Solidâ€State Reactions Monitored by Xâ€ray Absorption Spectroscopy: Temperatureâ€Induced Proton Transfer Leads to Chemical Shifts. Chemistry - A European Journal, 2016, 22, 15600-15604.	3.3	4
10	Chemical Speciation and Bond Lengths of Organic Solutes by Coreâ€Level Spectroscopy: pH and Solvent Influence on <i>p</i> à€Aminobenzoic Acid. Chemistry - A European Journal, 2015, 21, 7256-7263.	3.3	15
11	NEXAFS Sensitivity to Bond Lengths in Complex Molecular Materials: A Study of Crystalline Saccharides. Journal of Physical Chemistry B, 2015, 119, 14373-14381.	2.6	24
12	Proton Transfer, Hydrogen Bonding, and Disorder: Nitrogen Near-Edge X-ray Absorption Fine Structure and X-ray Photoelectron Spectroscopy of Bipyridine–Acid Salts and Co-crystals. Crystal Growth and Design, 2015, 15, 1776-1783.	3.0	55
13	Intermolecular bonding of hemin in solution and in solid state probed by N K-edge X-ray spectroscopies. Physical Chemistry Chemical Physics, 2015, 17, 29000-29006.	2.8	9
14	Incisive Probing of Intermolecular Interactions in Molecular Crystals: Core Level Spectroscopy Combined with Density Functional Theory. Journal of Physical Chemistry B, 2014, 118, 12121-12129.	2.6	28
15	Conservation of artists' acrylic emulsion paints: XPS, NEXAFS and ATRâ€FTIR studies of wet cleaning methods. Surface and Interface Analysis, 2014, 46, 776-780.	1.8	14
16	Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid–base complexes. Physical Chemistry Chemical Physics, 2014, 16, 1150-1160.	2.8	153
17	Immobilisation of cellâ€binding peptides on polyâ€Îµâ€caprolactone (PCL) films: A comparative XPS study of two chemical surface functionalisation methods. Surface and Interface Analysis, 2014, 46, 673-678.	1.8	17
18	Immobilization of cellâ€binding peptides on polyâ€Îµâ€caprolactone film surface to biomimic the peripheral nervous system. Journal of Biomedical Materials Research - Part A, 2013, 101A, 491-501.	4.0	27

#	Article	IF	CITATIONS
19	Quantitative analysis of complex amino acids and RGD peptides by Xâ€ray photoelectron spectroscopy (XPS). Surface and Interface Analysis, 2013, 45, 1238-1246.	1.8	208
20	Detection of Free Base Surface Enrichment of a Pharmaceutical Salt by X-ray Photoelectron Spectroscopy (XPS). Journal of Pharmaceutical Sciences, 2011, 100, 942-948.	3.3	13
21	Crystallography Aided by Atomic Coreâ€Level Binding Energies: Proton Transfer versus Hydrogen Bonding in Organic Crystal Structures. Angewandte Chemie - International Edition, 2011, 50, 9916-9918.	13.8	38
22	Salt or Co-Crystal? Determination of Protonation State by X-Ray Photoelectron Spectroscopy (XPS). Journal of Pharmaceutical Sciences, 2010, 99, 4453-4457.	3.3	68
23	Characterization of Proton Transfer in Co-Crystals by X-ray Photoelectron Spectroscopy (XPS). Crystal Growth and Design, 2010, 10, 1435-1442.	3.0	66
24	Identification of Protonation State by XPS, Solid-State NMR, and DFT: Characterization of the Nature of a New Theophylline Complex by Experimental and Computational Methods. Journal of Physical Chemistry B, 2010, 114, 13961-13969.	2.6	72
25	Quantitative analysis of saccharides by Xâ€ray photoelectron spectroscopy. Surface and Interface Analysis, 2009, 41, 453-462.	1.8	69