
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2880512/publications.pdf Version: 2024-02-01

Κιινικάτι Τειμι

#	Article	IF	CITATIONS
1	Short cytoplasmic isoform of IL1R1/CD121a mediates IL1β induced proliferation of synovium-derived mesenchymal stem/stromal cells through ERK1/2 pathway. Heliyon, 2022, 8, e09476.	1.4	0
2	A novel PAI-1 inhibitor prevents ageing-related muscle fiber atrophy. Biochemical and Biophysical Research Communications, 2021, 534, 849-856.	1.0	1
3	Reply: Letter to the editor. Journal of Orthopaedic Research, 2021, 39, 2535-2536.	1.2	0
4	Thawed cryopreserved synovial mesenchymal stem cells show comparable effects to cultured cells in the inhibition of osteoarthritis progression in rats. Scientific Reports, 2021, 11, 9683.	1.6	6
5	Extracellular vesicles derived from mesenchymal stromal cells mediate endogenous cell growth and migration via the CXCL5 and CXCL6/CXCR2 axes and repair menisci. Stem Cell Research and Therapy, 2021, 12, 414.	2.4	12
6	Inflammatory and healing environment in synovial fluid after anterior cruciate ligament reconstruction: Granulocytes and endogenous opioids as new targets of postoperative pain. Biochemistry and Biophysics Reports, 2021, 26, 100981.	0.7	1
7	Biomechanical analysis of the centralization procedure for extruded lateral menisci with posterior root deficiency in a porcine model. Journal of Orthopaedic Science, 2020, 25, 161-166.	0.5	26
8	Fibrotic changes in the infrapatellar fat pad induce new vessel formation and sensory nerve fiber endings that associate prolonged pain. Journal of Orthopaedic Research, 2020, 38, 1296-1306.	1.2	18
9	Synovial fluid-derived mesenchymal cells have non-inferior chondrogenic potential and can be utilized for regenerative therapy as substitute for synovium-derived cells. Biochemical and Biophysical Research Communications, 2020, 523, 465-472.	1.0	19
10	Mesenchymal Stem Cells in Synovial Fluid Increase in Knees with Degenerative Meniscus Injury after Arthroscopic Procedures through the Endogenous Effects of CGRP and HGF. Stem Cell Reviews and Reports, 2020, 16, 1305-1315.	1.7	14
11	Two―and threeâ€dimensional optical coherence tomography to differentiate degenerative changes in a rat meniscectomy model. Journal of Orthopaedic Research, 2020, 38, 2592-2600.	1.2	1
12	Silibinin Upregulates CXCR4 Expression in Cultured Bone Marrow Cells (BMCs) Especially in Pulmonary Arterial Hypertension Rat Model. Cells, 2020, 9, 1276.	1.8	10
13	Intra-articular Injection of Pure Platelet-Rich Plasma Is the Most Effective Treatment for Joint Pain by Modulating Synovial Inflammation and Calcitonin Gene-Related Peptide Expression in a Rat Arthritis Model. American Journal of Sports Medicine, 2020, 48, 2004-2012.	1.9	22
14	Morphological changes in synovial mesenchymal stem cells during their adhesion to the meniscus. Laboratory Investigation, 2020, 100, 916-927.	1.7	10
15	Remnant neuromuscular junctions in denervated muscles contribute to functional recovery in delayed peripheral nerve repair. Neural Regeneration Research, 2020, 15, 731.	1.6	12
16	Initial cell plating density affects properties of human primary synovial mesenchymal stem cells. Journal of Orthopaedic Research, 2019, 37, 1358-1367.	1.2	14
17	Petaloid recombinant peptide enhances in vitro cartilage formation by synovial mesenchymal stem cells. Journal of Orthopaedic Research, 2019, 37, 1350-1357.	1.2	4
18	Transplantation of Aggregates of Autologous Synovial Mesenchymal Stem Cells for Treatment of Cartilage Defects in the Femoral Condyle and the Femoral Groove in Microminipigs. American Journal of Sports Medicine, 2019, 47, 2338-2347.	1.9	33

#	Article	IF	CITATIONS
19	Cryopreservation in 95% serum with 5% DMSO maintains colony formation and chondrogenic abilities in human synovial mesenchymal stem cells. BMC Musculoskeletal Disorders, 2019, 20, 316.	0.8	15
20	Comparison of Highâ€Hydrostaticâ€Pressure Decellularized Versus Freezeâ€Thawed Porcine Menisci. Journal of Orthopaedic Research, 2019, 37, 2466-2475.	1.2	24
21	Time course analyses of structural changes in the infrapatellar fat pad and synovial membrane during inflammation-induced persistent pain development in rat knee joint. BMC Musculoskeletal Disorders, 2019, 20, 8.	0.8	22
22	Hyperbaric oxygen reduces inflammation, oxygenates injured muscle, and regenerates skeletal muscle via macrophage and satellite cell activation. Scientific Reports, 2018, 8, 1288.	1.6	54
23	Specific markers and properties of synovial mesenchymal stem cells in the surface, stromal, and perivascular regions. Stem Cell Research and Therapy, 2018, 9, 123.	2.4	43
24	Persistent synovial inflammation plays important roles in persistent pain development in the rat knee before cartilage degradation reaches the subchondral bone. BMC Musculoskeletal Disorders, 2018, 19, 291.	0.8	25
25	Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow. PLoS ONE, 2018, 13, e0202922.	1.1	60
26	Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates. Journal of Orthopaedic Research, 2017, 35, 1274-1282.	1.2	59
27	Pretreatment with IL-1β enhances proliferation and chondrogenic potential of synovium-derived mesenchymal stem cells. Cytotherapy, 2017, 19, 181-193.	0.3	25
28	Complete human serum maintains viability and chondrogenic potential of human synovial stem cells: suitable conditions for transplantation. Stem Cell Research and Therapy, 2017, 8, 144.	2.4	17
29	Yields and chondrogenic potential of primary synovial mesenchymal stem cells are comparable between rheumatoid arthritis and osteoarthritis patients. Stem Cell Research and Therapy, 2017, 8, 115.	2.4	26
30	Centralization of extruded medial meniscus delays cartilage degeneration in rats. Journal of Orthopaedic Science, 2017, 22, 542-548.	0.5	44
31	Effects of Different Cell-Detaching Methods on the Viability and Cell Surface Antigen Expression of Synovial Mesenchymal Stem Cells. Cell Transplantation, 2017, 26, 1089-1102.	1.2	110
32	Strenuous running exacerbates knee cartilage erosion induced by low amount of mono-iodoacetate in rats. BMC Musculoskeletal Disorders, 2017, 18, 36.	0.8	6
33	Meniscal regeneration after resection of the anterior half of the medial meniscus in mice. Journal of Orthopaedic Research, 2017, 35, 1958-1965.	1.2	13
34	TNFα promotes proliferation of human synovial MSCs while maintaining chondrogenic potential. PLoS ONE, 2017, 12, e0177771.	1.1	20
35	Inflammatory cytokine levels in synovial fluid 3, 4Âdays postoperatively and its correlation with early-phase functional recovery after anterior cruciate ligament reconstruction: a cohort study. Journal of Experimental Orthopaedics, 2016, 3, 30.	0.8	13
36	Coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration. BMC Musculoskeletal Disorders, 2016, 17, 238.	0.8	11

#	Article	IF	CITATIONS
37	Weekly injections of Hylan G-F 20 delay cartilage degeneration in partial meniscectomized rat knees. BMC Musculoskeletal Disorders, 2016, 17, 188.	0.8	9
38	Relationship between MRI <i>T</i> ₁ rho value and histological findings of intact and radially incised menisci in microminipigs. Journal of Magnetic Resonance Imaging, 2016, 43, 434-445.	1.9	14
39	Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo. PLoS ONE, 2016, 11, e0148777.	1.1	40
40	Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model. Stem Cells, 2015, 33, 1927-1938.	1.4	51
41	Platelet-derived growth factor (PDGF)-AA/AB in human serum are potential indicators of the proliferative capacity of human synovial mesenchymal stem cells. Stem Cell Research and Therapy, 2015, 6, 243.	2.4	28
42	Elimination of BMP7 from the developing limb mesenchyme leads to articular cartilage degeneration and synovial inflammation with increased age. FEBS Letters, 2015, 589, 1240-1248.	1.3	26
43	Follistatin Alleviates Synovitis and Articular Cartilage Degeneration Induced by Carrageenan. International Journal of Inflammation, 2014, 2014, 1-9.	0.9	16
44	Meniscus regeneration by syngeneic, minor mismatched, and major mismatched transplantation of synovial mesenchymal stem cells in a rat model. Journal of Orthopaedic Research, 2014, 32, 928-936.	1.2	31
45	Mesenchymal Stem Cells in Synovial Fluid Increase After Meniscus Injury. Clinical Orthopaedics and Related Research, 2014, 472, 1357-1364.	0.7	105
46	Transplantation of Achilles Tendon Treated With Bone Morphogenetic Protein 7 Promotes Meniscus Regeneration in a Rat Model of Massive Meniscal Defect. Arthritis and Rheumatism, 2013, 65, 2876-2886.	6.7	49
47	Intraarticular injection of synovial stem cells promotes meniscal regeneration in a rabbit massive meniscal defect model. Journal of Orthopaedic Research, 2013, 31, 1354-1359.	1.2	85
48	Comparison of Gingiva, Dental Pulp, and Periodontal Ligament Cells from the Standpoint of Mesenchymal Stem Cell Properties. Cell Medicine, 2012, 4, 13-22.	5.0	34
49	Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy, 2012, 14, 327-338.	0.3	110
50	Osteopontin Level in Synovial Fluid Is Associated with the Severity of Joint Pain and Cartilage Degradation after Anterior Cruciate Ligament Rupture. PLoS ONE, 2012, 7, e49014.	1.1	24
51	Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. Journal of Orthopaedic Research, 2012, 30, 943-949.	1.2	177
52	BMP-7 inhibits cartilage degeneration through suppression of inflammation in rat zymosan-induced arthritis. Cell and Tissue Research, 2011, 344, 321-332.	1.5	24
53	Conditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair. Journal of Orthopaedic Research, 2010, 28, 384-389.	1.2	53
54	BMP4 Is Dispensable for Skeletogenesis and Fracture-Healing in the Limb. Journal of Bone and Joint Surgery - Series A, 2008, 90, 14-18.	1.4	86

#	Article	IF	CITATIONS
55	BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature Genetics, 2006, 38, 1424-1429.	9.4	708
56	Genetic Analysis of the Roles of BMP2, BMP4, and BMP7 in Limb Patterning and Skeletogenesis. PLoS Genetics, 2006, 2, e216.	1.5	532
57	Aged Mice Require Full Transcription Factor, Runx2/Cbfa1, Gene Dosage for Cancellous Bone Regeneration After Bone Marrow Ablation. Journal of Bone and Mineral Research, 2004, 19, 1481-1489.	3.1	33
58	Transient suppression of core-binding factor alpha 1 expression by basic fibroblast growth factor in rat osteoblast-like osteosarcoma ROS17/2.8 cells. Journal of Bone and Mineral Metabolism, 2001, 19, 213-219.	1.3	13
59	Transcriptional suppression ofSox9 expression in chondrocytes by retinoic acid. Journal of Cellular Biochemistry, 2001, 81, 71-78.	1.2	33
60	Osteopontin Deficiency Reduces Experimental Tumor Cell Metastasis to Bone and Soft Tissues. Journal of Bone and Mineral Research, 2001, 16, 652-659.	3.1	94
61	Enhancement of Osteoclastic Bone Resorption and Suppression of Osteoblastic Bone Formation in Response to Reduced Mechanical Stress Do Not Occur in the Absence of Osteopontin. Journal of Experimental Medicine, 2001, 193, 399-404.	4.2	209
62	Osteopontin Facilitates Angiogenesis, Accumulation of Osteoclasts, and Resorption in Ectopic Bone*. Endocrinology, 2001, 142, 1325-1332.	1.4	163
63	Osteopontin Facilitates Angiogenesis, Accumulation of Osteoclasts, and Resorption in Ectopic Bone. Endocrinology, 2001, 142, 1325-1332.	1.4	61