Nikolay I Zheludev

List of Publications by Citations

Source: https://exaly.com/author-pdf/2880421/nikolay-i-zheludev-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,721 85 160 423 h-index g-index citations papers 611 33,407 7.2 7.55 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
423	The Fano resonance in plasmonic nanostructures and metamaterials. <i>Nature Materials</i> , 2010 , 9, 707-15	27	2834
422	From metamaterials to metadevices. <i>Nature Materials</i> , 2012 , 11, 917-24	27	1289
421	Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. <i>Physical Review Letters</i> , 2007 , 99, 147401	7.4	805
420	Metamaterial analog of electromagnetically induced transparency. <i>Physical Review Letters</i> , 2008 , 101, 253903	7.4	658
419	Optically reconfigurable metasurfaces and photonic devices based on phase change materials. <i>Nature Photonics</i> , 2016 , 10, 60-65	33.9	652
418	Ultrafast active plasmonics. <i>Nature Photonics</i> , 2009 , 3, 55-58	33.9	636
417	Metamaterial with negative index due to chirality. <i>Physical Review B</i> , 2009 , 79,	3.3	568
416	Lasing spaser. Nature Photonics, 2008, 2, 351-354	33.9	561
415	Asymmetric propagation of electromagnetic waves through a planar chiral structure. <i>Physical Review Letters</i> , 2006 , 97, 167401	7.4	541
414	Applied physics. The road ahead for metamaterials. <i>Science</i> , 2010 , 328, 582-3	33.3	473
413	Toroidal dipolar response in a metamaterial. <i>Science</i> , 2010 , 330, 1510-2	33.3	469
412	Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. <i>Physical Review Letters</i> , 2006 , 97, 177401	7.4	445
411	A super-oscillatory lens optical microscope for subwavelength imaging. <i>Nature Materials</i> , 2012 , 11, 432	- 5 27	425
410	Metamaterials: optical activity without chirality. <i>Physical Review Letters</i> , 2009 , 102, 113902	7.4	393
409	Optical manifestations of planar chirality. <i>Physical Review Letters</i> , 2003 , 90, 107404	7.4	365
408	An all-optical, non-volatile, bidirectional, phase-change meta-switch. Advanced Materials, 2013, 25, 3050)- 4 4	306
407	Electromagnetic toroidal excitations in matter and free space. <i>Nature Materials</i> , 2016 , 15, 263-71	27	304

406	Reconfigurable photonic metamaterials. <i>Nano Letters</i> , 2011 , 11, 2142-4	11.5	280
405	Terahertz metamaterial with asymmetric transmission. <i>Physical Review B</i> , 2009 , 80,	3.3	265
404	An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. <i>Nature Nanotechnology</i> , 2013 , 8, 252-5	28.7	264
403	Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures. <i>Nano Letters</i> , 2007 , 7, 1996-1999	11.5	242
402	Metamaterial electro-optic switch of nanoscale thickness. <i>Applied Physics Letters</i> , 2010 , 96, 143105	3.4	237
401	Giant optical gyrotropy due to electromagnetic coupling. <i>Applied Physics Letters</i> , 2007 , 90, 223113	3.4	237
400	Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. <i>Applied Physics Letters</i> , 2009 , 94, 211902	3.4	229
399	Controlling light-with-light without nonlinearity. <i>Light: Science and Applications</i> , 2012 , 1, e18-e18	16.7	225
398	Reconfigurable nanomechanical photonic metamaterials. <i>Nature Nanotechnology</i> , 2016 , 11, 16-22	28.7	215
397	Super-resolution without evanescent waves. <i>Nano Letters</i> , 2009 , 9, 1249-54	11.5	208
397 396	Super-resolution without evanescent waves. <i>Nano Letters</i> , 2009 , 9, 1249-54 Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. <i>Applied Physics Letters</i> , 2004 , 84, 1416-1418	3.4	208 197
	Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural		
396	Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. <i>Applied Physics Letters</i> , 2004 , 84, 1416-1418	3.4	197
396 395	Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. <i>Applied Physics Letters</i> , 2004 , 84, 1416-1418 Graphene in a photonic metamaterial. <i>Optics Express</i> , 2010 , 18, 8353-9	3.4	197 195
396 395 394	Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. <i>Applied Physics Letters</i> , 2004 , 84, 1416-1418 Graphene in a photonic metamaterial. <i>Optics Express</i> , 2010 , 18, 8353-9 Optical activity in extrinsically chiral metamaterial. <i>Applied Physics Letters</i> , 2008 , 93, 191911 Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. <i>Scientific</i>	3·4 3·3	197 195 194
396 395 394 393	Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. <i>Applied Physics Letters</i> , 2004 , 84, 1416-1418 Graphene in a photonic metamaterial. <i>Optics Express</i> , 2010 , 18, 8353-9 Optical activity in extrinsically chiral metamaterial. <i>Applied Physics Letters</i> , 2008 , 93, 191911 Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. <i>Scientific Reports</i> , 2013 , 3, 2967 Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. <i>Physical Review</i>	3·4 3·3 4·9	197 195 194 188
396 395 394 393 392	Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations. <i>Applied Physics Letters</i> , 2004 , 84, 1416-1418 Graphene in a photonic metamaterial. <i>Optics Express</i> , 2010 , 18, 8353-9 Optical activity in extrinsically chiral metamaterial. <i>Applied Physics Letters</i> , 2008 , 93, 191911 Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. <i>Scientific Reports</i> , 2013 , 3, 2967 Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. <i>Physical Review Letters</i> , 2010 , 105, 227403	3·4 3·3 3·4 4·9	197 195 194 188

388	Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. <i>Optics Express</i> , 2009 , 17, 8548-51	3.3	174
387	Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. <i>Nature Communications</i> , 2012 , 3, 1274	17.4	167
386	All-dielectric phase-change reconfigurable metasurface. <i>Applied Physics Letters</i> , 2016 , 109, 051103	3.4	161
385	Giant nonlinear optical activity in a plasmonic metamaterial. <i>Nature Communications</i> , 2012 , 3, 833	17.4	157
384	Spectral collapse in ensembles of metamolecules. <i>Physical Review Letters</i> , 2010 , 104, 223901	7.4	148
383	Focusing of light by a nanohole array. <i>Applied Physics Letters</i> , 2007 , 90, 091119	3.4	144
382	Optical Anapole Metamaterial. ACS Nano, 2018, 12, 1920-1927	16.7	142
381	Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. <i>Advanced Materials</i> , 2011 , 23, 5540-4	24	142
380	Extrinsic electromagnetic chirality in metamaterials. <i>Journal of Optics</i> , 2009 , 11, 074009		137
379	Design of plasmonic toroidal metamaterials at optical frequencies. <i>Optics Express</i> , 2012 , 20, 1760-8	3.3	137
378	Active plasmonics: current status. Laser and Photonics Reviews, 2010, 4, 562-567	8.3	137
377	A Micromachined Reconfigurable Metamaterial via Reconfiguration of Asymmetric Split-Ring Resonators. <i>Advanced Functional Materials</i> , 2011 , 21, 3589-3594	15.6	135
376	Highly tunable optical activity in planar achiral terahertz metamaterials. Optics Express, 2010, 18, 13425	-30,	135
375	Nanohole array as a lens. <i>Nano Letters</i> , 2008 , 8, 2469-72	11.5	133
374	Planar metamaterial with transmission and reflection that depend on the direction of incidence. <i>Applied Physics Letters</i> , 2009 , 94, 131901	3.4	128
373	Toroidal metamaterial. <i>New Journal of Physics</i> , 2007 , 9, 324-324	2.9	128
372	Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. <i>Optics Express</i> , 2013 , 21, 26721-8	3.3	127
37 ¹	Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch. <i>Advanced Optical Materials</i> , 2015 , 3, 674-679	8.1	126

(2013-2013)

370	Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging. <i>Journal of Optics (United Kingdom)</i> , 2013 , 15, 094008	1.7	124
369	Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies. <i>Nature Communications</i> , 2018 , 9, 4056	17.4	124
368	Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation. <i>Nature Communications</i> , 2012 , 3, 651	17.4	123
367	Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study. <i>Nano Letters</i> , 2012 , 12, 4172-80	11.5	120
366	Layered chiral metallic microstructures with inductive coupling. <i>Applied Physics Letters</i> , 2001 , 78, 498-50	0 9 .4	120
365	Metamaterial-Induced Transparency: Sharp Fano Resonances and Slow Light. <i>Optics and Photonics News</i> , 2009 , 20, 22	1.9	117
364	What diffraction limit?. Nature Materials, 2008, 7, 420-2	27	116
363	Sharp Toroidal Resonances in Planar Terahertz Metasurfaces. <i>Advanced Materials</i> , 2016 , 28, 8206-8211	24	115
362	Chiral mirrors. <i>Applied Physics Letters</i> , 2015 , 106, 221901	3.4	115
361	Coherent perfect absorption in deeply subwavelength films in the single-photon regime. <i>Nature Communications</i> , 2015 , 6, 7031	17.4	114
360	Ultrafast all-optical switching via coherent modulation of metamaterial absorption. <i>Applied Physics Letters</i> , 2014 , 104, 141102	3.4	113
359	Ray-optics cloaking devices for large objects in incoherent natural light. <i>Nature Communications</i> , 2013 , 4, 2652	17.4	112
358	Temperature control of Fano resonances and transmission in superconducting metamaterials. <i>Optics Express</i> , 2010 , 18, 9015-9	3.3	109
357	Light well: a tunable free-electron light source on a chip. <i>Physical Review Letters</i> , 2009 , 103, 113901	7.4	109
356	The magnetic response of graphene split-ring metamaterials. <i>Light: Science and Applications</i> , 2013 , 2, e78-e78	16.7	107
355	Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2. <i>Nature Communications</i> , 2014 , 5, 5139	17.4	101
354	Carbon nanotubes in a photonic metamaterial. <i>Physical Review Letters</i> , 2010 , 104, 153902	7.4	101
353	Toroidal lasing spaser. <i>Scientific Reports</i> , 2013 , 3, 1237	4.9	99

352	Micromachined tunable metamaterials: a review. Journal of Optics (United Kingdom), 2012, 14, 114009	1.7	99
351	Super-oscillatory optical needle. <i>Applied Physics Letters</i> , 2013 , 102, 031108	3.4	98
350	The plasmon Talbot effect. <i>Optics Express</i> , 2007 , 15, 9692-700	3.3	97
349	Dielectric Metamaterials with Toroidal Dipolar Response. <i>Physical Review X</i> , 2015 , 5,	9.1	96
348	Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. <i>Light: Science and Applications</i> , 2015 , 4, e292-e292	16.7	94
347	A magneto-electro-optical effect in a plasmonic nanowire material. <i>Nature Communications</i> , 2015 , 6, 7021	17.4	94
346	Generation of traveling surface plasmon waves by free-electron impact. <i>Nano Letters</i> , 2006 , 6, 1113-5	11.5	94
345	Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths. <i>Scientific Reports</i> , 2014 , 4, 6333	4.9	93
344	A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. <i>Advanced Materials</i> , 2015 , 27, 4739-43	24	92
343	Broken time reversal of light interaction with planar chiral nanostructures. <i>Physical Review Letters</i> , 2003 , 91, 247404	7·4	92
342	Optical super-resolution through super-oscillations. <i>Journal of Optics</i> , 2007 , 9, S285-S288		91
341	Electromagnetic wave analogue of an electronic diode. <i>New Journal of Physics</i> , 2011 , 13, 033025	2.9	87
340	Organometallic Perovskite Metasurfaces. Advanced Materials, 2017, 29, 1604268	24	85
339	Optical whirlpool on an absorbing metallic nanoparticle. <i>Optics Express</i> , 2005 , 13, 8372-9	3.3	85
338	Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. <i>Optics Express</i> , 2013 , 21, 1633-8	3.3	84
337	Coherent and incoherent metamaterials and order-disorder transitions. <i>Physical Review B</i> , 2009 , 80,	3.3	83
336	Nonlinear graphene metamaterial. <i>Applied Physics Letters</i> , 2012 , 100, 181109	3.4	82
335	Applied physics. Obtaining optical properties on demand. <i>Science</i> , 2015 , 348, 973-4	33.3	81

(2002-2016)

334	Two-dimensional control of light with light on metasurfaces. <i>Light: Science and Applications</i> , 2016 , 5, e16070	16.7	81	
333	Achromatic super-oscillatory lenses with sub-wavelength focusing. <i>Light: Science and Applications</i> , 2017 , 6, e17036	16.7	79	
332	A Roadmap for Metamaterials. <i>Optics and Photonics News</i> , 2011 , 22, 30	1.9	79	
331	Gyrotropy of a metamolecule: wire on a torus. <i>Physical Review Letters</i> , 2009 , 103, 093901	7.4	79	
330	Planar electromagnetic metamaterial with a fish scale structure. <i>Physical Review E</i> , 2005 , 72, 056613	2.4	79	
329	Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. <i>Optics Express</i> , 2011 , 19, 12837-42	3.3	77	
328	Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces. <i>NPG Asia Materials</i> , 2018 , 10, 533-539	10.3	76	
327	Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film. <i>Optics Letters</i> , 2004 , 29, 1414-6	3	74	
326	Asymmetric transmission: a generic property of two-dimensional periodic patterns. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 024006	1.7	73	
325	Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial. <i>Advanced Materials</i> , 2016 , 28, 729-33	24	73	
324	Coherent control of Snell's law at metasurfaces. Optics Express, 2014, 22, 21051-60	3.3	70	
323	Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots. <i>Physical Review Letters</i> , 2011 , 106, 085501	7.4	7º	
322	Optical magnetic mirrors. <i>Journal of Optics</i> , 2007 , 9, L1-L2		70	
321	Roadmap on metasurfaces. Journal of Optics (United Kingdom), 2019, 21, 073002	1.7	69	
320	All-optical phase-change memory in a single gallium nanoparticle. <i>Physical Review Letters</i> , 2007 , 98, 153	3905	69	
319	High-contrast modulation of light with light by control of surface plasmon polariton wave coupling. <i>Applied Physics Letters</i> , 2004 , 85, 3369-3371	3.4	68	
318	Mirror that does not change the phase of reflected waves. <i>Applied Physics Letters</i> , 2006 , 88, 091119	3.4	67	
317	Optical control of gallium nanoparticle growth. <i>Applied Physics Letters</i> , 2002 , 80, 1643-1645	3.4	66	

316	Modulating sub-THz radiation with current in superconducting metamaterial. <i>Physical Review Letters</i> , 2012 , 109, 243904	7.4	63
315	Polarization effects in the diffraction of light by a planar chiral structure. <i>Physical Review E</i> , 2005 , 71, 037603	2.4	63
314	Electron-beam-driven collective-mode metamaterial light source. <i>Physical Review Letters</i> , 2012 , 109, 217401	7.4	61
313	Roadmap on superoscillations. <i>Journal of Optics (United Kingdom)</i> , 2019 , 21, 053002	1.7	59
312	Detecting nanometric displacements with optical ruler metrology. <i>Science</i> , 2019 , 364, 771-775	33.3	58
311	Superconducting plasmonics and extraordinary transmission. <i>Applied Physics Letters</i> , 2010 , 97, 111106	3.4	58
310	Nonlinear dielectric optomechanical metamaterials. <i>Light: Science and Applications</i> , 2013 , 2, e96-e96	16.7	57
309	Magnetic plasmon induced transparency in three-dimensional metamolecules. <i>Nanophotonics</i> , 2012 , 1, 131-138	6.3	57
308	Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength. <i>Applied Physics Letters</i> , 2011 , 99, 171915	3.4	55
307	Many-Body Subradiant Excitations in Metamaterial Arrays: Experiment and Theory. <i>Physical Review Letters</i> , 2017 , 119, 053901	7.4	54
306	Phase matched second harmonic generation from nanostructured metallic surfaces. <i>Journal of Optics</i> , 2004 , 6, 26-28		54
305	Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. <i>Science Advances</i> , 2019 , 5, eaav4506	14.3	53
304	Plasmon coupling in vertical split-ring resonator metamolecules. <i>Scientific Reports</i> , 2015 , 5, 9726	4.9	53
303	Far field subwavelength focusing using optical eigenmodes. <i>Applied Physics Letters</i> , 2011 , 98, 181109	3.4	52
302	Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution. <i>Optics Express</i> , 2007 , 15, 11313-20	3.3	52
301	Holographic free-electron light source. <i>Nature Communications</i> , 2016 , 7, 13705	17.4	52
300	Continuous metal plasmonic frequency selective surfaces. <i>Optics Express</i> , 2011 , 19, 23279-85	3.3	51
299	Light-induced switching between structural forms with different optical properties in a single gallium nanoparticulate. <i>Nano Letters</i> , 2005 , 5, 2104-7	11.5	51

298	Active control of surface plasmonpolariton waves. <i>Journal of Optics</i> , 2005 , 7, S85-S89		51
297	Nano-optomechanical nonlinear dielectric metamaterials. <i>Applied Physics Letters</i> , 2015 , 107, 191110	3.4	49
296	Sub-wavelength focusing meta-lens. <i>Optics Express</i> , 2013 , 21, 7577-82	3.3	49
295	Far-Field Superoscillatory Metamaterial Superlens. <i>Physical Review Applied</i> , 2019 , 11,	4.3	48
294	Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. <i>Nature Communications</i> , 2018 , 9, 182	17.4	48
293	1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage. <i>Applied Physics Letters</i> , 2014 , 104, 121105	3.4	47
292	Phase coexistence in gallium nanoparticles controlled by electron excitation. <i>Physical Review Letters</i> , 2004 , 92, 145702	7.4	47
291	Fabrication of three dimensional split ring resonators by stress-driven assembly method. <i>Optics Express</i> , 2012 , 20, 9415-20	3.3	45
29 0	Coherent control of optical polarization effects in metamaterials. <i>Scientific Reports</i> , 2015 , 5, 8977	4.9	44
289	Visible Range Plasmonic Modes on Topological Insulator Nanostructures. <i>Advanced Optical Materials</i> , 2017 , 5, 1600768	8.1	44
288	Chalcogenide glasses in active plasmonics. <i>Physica Status Solidi - Rapid Research Letters</i> , 2010 , 4, 274-27	'6 2.5	44
287	Reconfigurable Ultraviolet and High-Energy Visible Dielectric Metamaterials. <i>Nano Letters</i> , 2019 , 19, 1643-1648	11.5	43
286	Plasmonics of topological insulators at optical frequencies. NPG Asia Materials, 2017, 9, e425-e425	10.3	43
285	Optical properties of closely packed nanoparticle films: spheroids and nanoshells. <i>Journal of Optics</i> , 2004 , 6, 155-160		43
284	Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror. <i>Applied Physics Letters</i> , 1999 , 74, 3619-3621	3.4	43
283	Toroidal circular dichroism. <i>Physical Review B</i> , 2016 , 94,	3.3	42
282	Ultra-confined surface phonon polaritons in molecular layers of van der Waals dielectrics. <i>Nature Communications</i> , 2018 , 9, 1762	17.4	41
281	Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution. <i>Optics Express</i> , 2014 , 22, 6428-37	3.3	41

280	Point spread function of the optical needle super-oscillatory lens. <i>Applied Physics Letters</i> , 2014 , 104, 23	1 <u>3.Q</u> 9	41
279	THz bandwidth optical switching with carbon nanotube metamaterial. <i>Optics Express</i> , 2012 , 20, 6068-79	3.3	41
278	Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces. <i>Physical Review B</i> , 2012 , 85,	3.3	40
277	Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial. <i>Applied Physics Letters</i> , 2013 , 103, 141904	3.4	40
276	A photonic switch based on a gigantic, reversible optical nonlinearity of liquefying gallium. <i>Applied Physics Letters</i> , 1998 , 73, 1787-1789	3.4	40
275	Coherent control of birefringence and optical activity. <i>Applied Physics Letters</i> , 2014 , 105, 011906	3.4	39
274	Magnetic control of a meta-molecule. <i>Optics Express</i> , 2013 , 21, 1456-64	3.3	39
273	Wavelength dependent birefringence of surface plasmon polaritonic crystals. <i>Physical Review B</i> , 2004 , 70,	3.3	39
272	Nanoimprint lithography for planar chiral photonic meta-materials. <i>Microelectronic Engineering</i> , 2005 , 78-79, 612-617	2.5	38
271	Coherent Excitation-Selective Spectroscopy of Multipole Resonances. <i>Physical Review Applied</i> , 2016 , 5,	4.3	37
270	Femtosecond surface plasmon pulse propagation. <i>Optics Letters</i> , 2011 , 36, 250-2	3	37
269	Optical nonlinearity resulting from a light-induced structural transition in gallium nanoparticles. <i>Applied Physics Letters</i> , 2003 , 82, 1087-1089	3.4	37
268	Transmitting hertzian optical nanoantenna with free-electron feed. <i>Nano Letters</i> , 2010 , 10, 3250-2	11.5	36
267	Enhanced microwave transmission through quasicrystal hole arrays. <i>Applied Physics Letters</i> , 2007 , 91, 081503	3.4	36
266	Nonlinear optics on the nanoscale. <i>Contemporary Physics</i> , 2002 , 43, 365-377	3.3	36
265	Single nanoparticle as photonic switch and optical memory element. <i>Journal of Optics</i> , 2006 , 8, S1-S8		34
264	Polarization conversion and flocusing lbf light propagating through a small chiral hole in a metallic screen. <i>Applied Physics Letters</i> , 2005 , 86, 201105	3.4	34
263	An optical fiber network oracle for NP-complete problems. <i>Light: Science and Applications</i> , 2014 , 3, e147	7- <u>16</u> 61 /1 7	33

262	A combinatorial approach to metamaterials discovery. Journal of Optics (United Kingdom), 2011, 13, 055	511072	33
261	All-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial. <i>APL Photonics</i> , 2016 , 1, 090801	5.2	33
260	Transformation optofluidics for large-angle light bending and tuning. Lab on A Chip, 2012, 12, 3785-90	7.2	32
259	Polarization instability and multistability in nonlinear optics. <i>Uspekhi Fizicheskikh Nauk</i> , 1989 , 32, 357-37	75	32
258	Atomic Response in the Near-Field of Nanostructured Plasmonic Metamaterial. <i>Nano Letters</i> , 2016 , 16, 3137-41	11.5	32
257	"Plasmonics" in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields. <i>Light: Science and Applications</i> , 2019 , 8, 2	16.7	32
256	Diffractive micro bar codes for encoding of biomolecules in multiplexed assays. <i>Analytical Chemistry</i> , 2008 , 80, 1902-9	7.8	31
255	Dispersion properties of nonradiating configurations: finite-difference time-domain modeling. <i>Physical Review E</i> , 2005 , 72, 036603	2.4	31
254	Cubic optical nonlinearity of free electrons in bulk gold. <i>Optics Letters</i> , 1995 , 20, 1368-70	3	31
253	Experimental observation of specular optical activity. <i>Physical Review Letters</i> , 1993 , 70, 3039-3042	7.4	31
252	Giant specular inverse Faraday effect in Cd0.6Mn0.4Te. <i>Solid State Communications</i> , 1994 , 89, 823-825	1.6	31
251	Giant optical forces in planar dielectric photonic metamaterials. <i>Optics Letters</i> , 2014 , 39, 4883-6	3	30
250	Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. <i>Nano Letters</i> , 2017 , 17, 6475-6480	11.5	30
249	Reconfiguring photonic metamaterials with currents and magnetic fields. <i>Applied Physics Letters</i> , 2015 , 106, 111905	3.4	29
248	Optically switchable photonic metasurfaces. <i>Applied Physics Letters</i> , 2015 , 107, 081102	3.4	29
247	Toroidal dipole excitations in metamolecules formed by interacting plasmonic nanorods. <i>Physical Review B</i> , 2016 , 93,	3.3	29
246	Quantum super-oscillation of a single photon. Light: Science and Applications, 2016, 5, e16127	16.7	28
245	Analysis of polarization transformations by a planar chiral array of complex-shaped particles. Journal of Optics, 2009 , 11, 074002		28

244	Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics. <i>Applied Physics Letters</i> , 2006 , 89, 031118	3.4	28
243	All-Optical Pattern Recognition and Image Processing on a Metamaterial Beam Splitter. <i>ACS Photonics</i> , 2017 , 4, 217-222	6.3	27
242	All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface. <i>Light: Science and Applications</i> , 2018 , 7, 17157	16.7	27
241	"Digitally" addressable focusing of light into a subwavelength hot spot. <i>Nano Letters</i> , 2012 , 12, 2728-31	11.5	27
240	A new model of geometric chirality for two-dimensional continuous media and planar meta-materials. <i>Journal of Optics</i> , 2004 , 6, 193-203		27
239	Low-loss terahertz superconducting plasmonics. <i>New Journal of Physics</i> , 2012 , 14, 115006	2.9	26
238	Equivalency of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical activity on reflection. <i>Physical Review B</i> , 1993 , 47, 11730-11735	3.3	26
237	Generation of deformation waves in the processes of photoexcitation and recombination of nonequilibrium carriers in silicon. <i>Applied Physics A: Solids and Surfaces</i> , 1986 , 40, 163-166		26
236	Polarization instability and multistability in nonlinear optics. <i>Uspekhi Fizicheskikh Nauk</i> , 1989 , 157, 683	0.5	26
235	Flux exclusion superconducting quantum metamaterial: towards quantum-level switching. <i>Scientific Reports</i> , 2012 , 2, 450	4.9	25
234	Dynamics of light-induced reflectivity switching in gallium films deposited on silica by pulsed laser ablation. <i>Optics Letters</i> , 2001 , 26, 441-3	3	25
233	Light-induced metallization in laser-deposited gallium films. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2001 , 18, 331	1.7	25
232	Coherent control of light-matter interactions in polarization standing waves. <i>Scientific Reports</i> , 2016 , 6, 31141	4.9	25
231	Optical response of plasmonic relief meta-surfaces. <i>Journal of Optics (United Kingdom)</i> , 2012 , 14, 11400	21.7	24
230	Cathodo- and photoluminescence in Yb(3+)-Er(3+) co-doped PbF(2) nanoparticles. <i>Optics Express</i> , 2010 , 18, 8836-46	3.3	24
229	Coherent and incoherent specular inverse Faraday effect: chi((3)) measurements in opaque materials. <i>Optics Letters</i> , 1994 , 19, 13-5	3	24
228	Nano- and Micro-Auxetic Plasmonic Materials. <i>Advanced Materials</i> , 2016 , 28, 5176-80	24	24
227	Wavevector Selective Metasurfaces and Tunnel Vision Filters. <i>Light: Science and Applications</i> , 2015 , 4, e306-e306	16.7	23

(2015-2013)

226	Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer. <i>Nanophotonics</i> , 2013 , 2, 153-160	6.3	23	
225	Light-controlled growth of gallium nanoparticles. <i>Journal of Applied Physics</i> , 2003 , 93, 3540-3544	2.5	23	
224	Specular optical activity of achiral metasurfaces. <i>Applied Physics Letters</i> , 2016 , 108, 141905	3.4	23	
223	Stoichiometric Engineering of Chalcogenide Semiconductor Alloys for Nanophotonic Applications. <i>Advanced Materials</i> , 2019 , 31, e1807083	24	22	
222	Infrared dielectric metamaterials from high refractive index chalcogenides. <i>Nature Communications</i> , 2020 , 11, 1692	17.4	22	
221	Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons. <i>Nature Communications</i> , 2020 , 11, 1863	17.4	22	
220	Exciting dynamic anapoles with electromagnetic doughnut pulses. <i>Applied Physics Letters</i> , 2017 , 111, 081104	3.4	22	
219	High-quality metamaterial dispersive grating on the facet of an optical fiber. <i>Applied Physics Letters</i> , 2017 , 111, 091106	3.4	22	
218	Radiation-harvesting resonant superconducting sub-THz metamaterial bolometer. <i>Superconductor Science and Technology</i> , 2013 , 26, 084001	3.1	22	
217	Femtosecond active plasmonics: ultrafast control of surface plasmon propagation. <i>Journal of Optics</i> , 2009 , 11, 114031		22	
216	Nanosecond dynamics of a gallium mirror light-induced reflectivity change. <i>Physical Review B</i> , 2001 , 63,	3.3	22	
215	Self-induced optical activity in crystals. <i>Optics Communications</i> , 1980 , 35, 92-95	2	22	
214	On the aromagnetism and anapole moment of anthracene nanocrystals. <i>New Journal of Physics</i> , 2007 , 9, 95-95	2.9	21	
213	Controlling the Optical Response of 2D Matter in Standing Waves. ACS Photonics, 2017, 4, 3000-3011	6.3	20	
212	Optical Gating of Resonance Fluorescence from a Single Germanium Vacancy Color Center in Diamond. <i>Physical Review Letters</i> , 2019 , 123, 033602	7.4	20	
211	Computing matrix inversion with optical networks. <i>Optics Express</i> , 2014 , 22, 295-304	3.3	20	
210	Efficient nonlinear optical converters made of potassium titanyl phosphate crystals. <i>Soviet Journal of Quantum Electronics</i> , 1985 , 15, 885-886		20	
209	Amplification of the Evanescent Field of Free Electrons. <i>ACS Photonics</i> , 2015 , 2, 1236-1240	6.3	19	

208	Giant magnetic modulation of a planar, hybrid metamolecule resonance. <i>New Journal of Physics</i> , 2014 , 16, 063002	2.9	19
207	Extraordinary properties of light transmission through a small chiral hole in a metallic screen. <i>Journal of Optics</i> , 2006 , 8, S98-S105		19
206	Femtosecond cubic optical nonlinearity of thin nickel films. <i>Optics Letters</i> , 1999 , 24, 1373-5	3	19
205	Pulse generation scheme for flying electromagnetic doughnuts. <i>Physical Review B</i> , 2018 , 97,	3.3	19
204	Coherent selection of invisible high-order electromagnetic excitations. Scientific Reports, 2017, 7, 44488	34.9	18
203	The reduction of surface plasmon losses in quasi-suspended graphene. Scientific Reports, 2015, 5, 9837	4.9	18
202	Optical modulation of surface plasmon-polariton coupling in a gallium/aluminium composite. <i>Optics Communications</i> , 2007 , 278, 207-210	2	18
201	Geometries for the coherent control of four-wave mixing in graphene multilayers. <i>Scientific Reports</i> , 2015 , 5, 15399	4.9	17
200	Localization of electromagnetic fields in disordered metamaterials. <i>Physical Review B</i> , 2012 , 85,	3.3	17
199	Tuneable electron-beam-driven nanoscale light source. <i>Journal of Optics (United Kingdom)</i> , 2010 , 12, 024012	1.7	17
198	Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation. <i>Europhysics Letters</i> , 2004 , 67, 614-619	1.6	17
197	Structural phase transition as a mechanism for broadband, low-threshold reflectivity switching in gallium. <i>Applied Physics Letters</i> , 2001 , 79, 2375-2377	3.4	17
196	Observation of time-nonreversible optical interaction with zinc-blende semiconductors. <i>Physical Review B</i> , 1994 , 50, 11508-11513	3.3	17
195	Effect of Zn(O,S) buffer layer thickness on charge carrier relaxation dynamics of CuInSe 2 solar cell. <i>Solar Energy</i> , 2015 , 115, 396-404	6.8	16
194	Magneto-optical response in bimetallic metamaterials. <i>Nanophotonics</i> , 2018 , 7, 199-206	6.3	16
193	Focused electromagnetic doughnut pulses and their interaction with interfaces and nanostructures. <i>Optics Express</i> , 2016 , 24, 3150-61	3.3	16
192	Fabrication of diffraction-encoded micro-particles using nano-imprint lithography. <i>Journal of Micromechanics and Microengineering</i> , 2007 , 17, S116-S121	2	16
191	Specular optical activity in GaAs. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1993 , 174, 335-338	2.3	16

190	Giant nonlinearity in a superconducting sub-terahertz metamaterial. <i>Applied Physics Letters</i> , 2016 , 108, 101107	3.4	16	
189	Reconfigurable phase-change photomask for grayscale photolithography. <i>Applied Physics Letters</i> , 2017 , 110, 201110	3.4	15	
188	Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures. <i>Applied Physics B: Lasers and Optics</i> , 2006 , 84, 97-101	1.9	15	
187	Time non-invariant linear birefringence and dichroism due to spinBrbit interaction. <i>Chemical Physics Letters</i> , 1994 , 217, 249-253	2.5	15	
186	Optical bistability in shape-memory nanowire metamaterial array. <i>Applied Physics Letters</i> , 2018 , 113, 021105	3.4	14	
185	A Non-Volatile Chalcogenide Switchable Hyperbolic Metamaterial. <i>Advanced Optical Materials</i> , 2018 , 6, 1800332	8.1	14	
184	Mechanochromic Reconfigurable Metasurfaces. <i>Advanced Science</i> , 2019 , 6, 1900974	13.6	14	
183	Metamaterial as a controllable template for nanoscale field localization. <i>Applied Physics Letters</i> , 2010 , 96, 041103	3.4	14	
182	Physical Mechanisms of Nonlinear Optical Activity in Crystals. <i>Optica Acta</i> , 1984 , 31, 1177-1184		14	
181	Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. <i>Nature Communications</i> , 2021 , 12, 5891	17.4	14	
180	Artificial intelligence for photonics and photonic materials. Reports on Progress in Physics, 2021, 84, 012	.4 0 1.4	14	
179	Far-field unlabeled super-resolution imaging with superoscillatory illumination. <i>APL Photonics</i> , 2020 , 5, 066107	5.2	14	
178	Doppler-free approach to optical pumping dynamics in the 6S1/2-5D5/2 electric quadrupole transition of cesium vapor. <i>Optics Letters</i> , 2016 , 41, 2005-8	3	14	
177	Optical generation of intense ultrashort magnetic pulses at the nanoscale. <i>New Journal of Physics</i> , 2013 , 15, 113035	2.9	13	
176	High capacity tagging using nanostructured diffraction barcodes. <i>Optics Express</i> , 2006 , 14, 1382-7	3.3	13	
175	Reversality of optical interactions in noncentrosymmetric media. <i>Optics Letters</i> , 1995 , 20, 1809	3	13	
174	Coherent and incoherent pump-probe specular inverse Faraday effect in media with instantaneous nonlinearity. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1994 , 11, 1388	1.7	13	
173	Reflective optical activity. <i>Faraday Discussions</i> , 1994 , 99, 359	3.6	13	

172	Nonlinear polarization spectroscopy in GaAs crystals: one- and two-photon resonances, excitonic effects, and the saturation of nonlinear susceptibilities. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1985 , 2, 1174	1.7	13
171	Coherent metamaterial absorption of two-photon states with 40% efficiency. <i>Physical Review A</i> , 2019 , 99,	2.6	13
170	Singularities in the flying electromagnetic doughnuts. <i>Nanophotonics</i> , 2019 , 8, 1379-1385	6.3	12
169	Label-free deeply subwavelength optical microscopy. <i>Applied Physics Letters</i> , 2020 , 116, 131105	3.4	12
168	11-fs dark pulses generated via coherent absorption in plasmonic metamaterial. <i>Optics Express</i> , 2017 , 25, 22620-22625	3.3	12
167	Towards Femtojoule Nanoparticle Phase-Change Memory. <i>Japanese Journal of Applied Physics</i> , 2009 , 48, 03A065	1.4	12
166	PumpBrobe reflective polarization-sensitive nonlinear optics. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1996 , 13, 2729	1.7	12
165	Broken symmetry of the kinetic coefficients and specular polarization phenomena. <i>Physical Review B</i> , 1993 , 47, 16141-16147	3.3	12
164	Spatial optical phase-modulating metadevice with subwavelength pixelation. <i>Optics Express</i> , 2016 , 24, 18790-8	3.3	12
163	Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial. <i>Advanced Materials</i> , 2019 , 31, e1804801	24	12
162	Ultrafast Coherent Absorption in Diamond Metamaterials. Advanced Materials, 2018, 30, e1707354	24	11
161	Optical NP problem solver on laser-written waveguide platform. <i>Optics Express</i> , 2018 , 26, 702-710	3.3	11
160	Fiber optic probe of free electron evanescent fields in the optical frequency range. <i>Applied Physics Letters</i> , 2014 , 104, 201101	3.4	11
159	Direct measurement of carrier spin relaxation times in opaque solids using the specular inverse Faraday effect. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1997 , 234, 379-383	2.3	11
158	Near-field polarization conversion in planar chiral nanostructures. <i>Optics Communications</i> , 2005 , 255, 91-96	2	11
157	Light-induced metallization at the gallium-silica interface. <i>Physical Review B</i> , 2001 , 64,	3.3	11
156	Random access actuation of nanowire grid metamaterial. <i>Nanotechnology</i> , 2016 , 27, 485206	3.4	11
155	Metadevice for intensity modulation with sub-wavelength spatial resolution. <i>Scientific Reports</i> , 2016 , 6, 37109	4.9	11

154	Optical Response of Nanohole Arrays Filled with Chalcogenide Low-Epsilon Media. <i>Advanced Optical Materials</i> , 2018 , 6, 1800395	8.1	11
153	Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber. <i>Applied Physics Letters</i> , 2018 , 113, 051103	3.4	10
152	Compositionally controlled plasmonics in amorphous semiconductor metasurfaces. <i>Optics Express</i> , 2018 , 26, 20861-20867	3.3	10
151	Electro-mechanical light modulator based on controlling the interaction of light with a metasurface. <i>Scientific Reports</i> , 2017 , 7, 5405	4.9	10
150	Cross-wavelength all-optical switching using nonlinearity of liquefying gallium. <i>Optics Express</i> , 1999 , 5, 157-62	3.3	10
149	Building Blocks for Quantum Network Based on Group-IV Split-Vacancy Centers in Diamond. <i>Advanced Quantum Technologies</i> , 2020 , 3, 1900069	4.3	10
148	The century of metamaterials. Journal of Optics (United Kingdom), 2017, 19, 080404	1.7	9
147	Femtosecond optical nonlinearity of metallic indium across the solid liquid transition. <i>Optics Letters</i> , 1997 , 22, 1879-81	3	9
146	Superimposed nanostructured diffraction gratings as high capacity barcodes for biological and chemical applications. <i>Optics Communications</i> , 2008 , 281, 1789-1795	2	9
145	Polymorphic nanoparticles as all-optical memory elements. <i>Optics Express</i> , 2006 , 14, 10652-6	3.3	9
144	Oscillating bubbles at the tips of optical fibers in liquid nitrogen. <i>Physical Review E</i> , 2003 , 68, 027301	2.4	9
143	Photoconductivity in confined gallium. <i>Applied Physics Letters</i> , 2002 , 80, 1297-1299	3.4	9
142	Passive Q-switching of an Er3+:Yb3+ fibre laser with a fibrised liquefying gallium mirror. <i>Optics Communications</i> , 1999 , 166, 239-243	2	9
141	Reciprocity in nonlocal optics. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 1641	1.7	9
140	Propagation of partially polarized light. <i>Physical Review A</i> , 1994 , 50, 709-713	2.6	9
139	Metamaterial Enhancement of Metal-Halide Perovskite Luminescence. <i>Nano Letters</i> , 2020 , 20, 7906-79	l 1 1.5	9
138	Measures of space-time nonseparability of electromagnetic pulses. <i>Physical Review Research</i> , 2021 , 3,	3.9	9
137	Fiber-integrated phase-change reconfigurable optical attenuator. APL Photonics, 2019, 4, 111301	5.2	8

136	Plasmonic nanoclocks. <i>Nano Letters</i> , 2014 , 14, 5162-9	11.5	8
135	Artifical chiral materials. <i>Journal of Optics</i> , 2009 , 11, 070201		8
134	Planar chiral meta-materials for photonic devices. <i>Journal of Materials Science: Materials in Electronics</i> , 2003 , 14, 393-395	2.1	8
133	Nonlinear polarization spectroscopy of ions interaction potential in alkali halide crystals. <i>Solid State Communications</i> , 1985 , 55, 713-715	1.6	8
132	Unlabeled Far-Field Deeply Subwavelength Topological Microscopy (DSTM). <i>Advanced Science</i> , 2020 , 8, 2002886	13.6	8
131	Electron beam lithography for high density meta fish scale operational at optical frequency. <i>Microelectronic Engineering</i> , 2009 , 86, 1081-1084	2.5	7
130	Femtosecond pulse duration measurements utilizing an ultrafast nonlinearity of nickel. <i>Optics Communications</i> , 1998 , 147, 148-152	2	7
129	Controlling light with light via structural transformations in metallic nanoparticles. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2006 , 12, 371-376	3.8	7
128	Resetting single nanoparticle structural phase with nanosecond pulses. <i>Applied Physics Letters</i> , 2007 , 91, 043115	3.4	7
127	Generation and Amplification of Subharmonics in Semiconductor-doped Glass by a Modulated Argon-ion Laser. <i>Journal of Modern Optics</i> , 1987 , 34, 1257-1262	1.1	7
126	All-Optical Implementation of the Ant Colony Optimization Algorithm. Scientific Reports, 2016, 6, 26283	3 4.9	7
125	Strong interactions and subradiance in disordered metamaterials. <i>Physical Review B</i> , 2018 , 98,	3.3	7
124	Cryptography in coherent optical information networks using dissipative metamaterial gates. <i>APL Photonics</i> , 2019 , 4, 046102	5.2	6
123	Near-field mapping of the edge mode of a topological valley slab waveguide at ⊉ 1.55 ਿh. <i>Applied Physics Letters</i> , 2020 , 116, 191105	3.4	6
122	Coupling of atomic quadrupole transitions with resonant surface plasmons. <i>Physical Review A</i> , 2019 , 99,	2.6	6
121	Spontaneous natural optical activity in disordered media. <i>Physical Review B</i> , 2017 , 95,	3.3	6
120	Luminescence readout of nanoparticle phase state. <i>Applied Physics Letters</i> , 2008 , 92, 093112	3.4	6
119	Reply to "Comment on 'Observation of time-nonreversible optical interaction with zinc-blende semiconductors' ". <i>Physical Review B</i> , 1995 , 52, 2203-2205	3.3	6

118	Intensity-dependent change of polarization of light normally reflected from a lang GaAs surface (nonlinear-optical activity on reflection). <i>Optics Letters</i> , 1988 , 13, 640	3	6
117	Enhancement of luminescence of quantum emitters in epsilon-near-zero waveguides. <i>Applied Physics Letters</i> , 2020 , 117, 181104	3.4	6
116	Light, the universe and everything 🛘 2 Herculean tasks for quantum cowboys and black diamond skiers. <i>Journal of Modern Optics</i> , 2018 , 65, 1261-1308	1.1	5
115	Direction-division multiplexed holographic free-electron-driven light sources. <i>Applied Physics Letters</i> , 2018 , 112, 021109	3.4	5
114	Three-dimensional metamaterials: from split ring resonator to toroidal metamolecule 2014,		5
113	A novel 3D nanolens for sub-wavelength focusing by self-aligned nanolithography. <i>Microelectronic Engineering</i> , 2010 , 87, 1506-1508	2.5	5
112	Nonreciprocity of natural rotatory power. <i>Optics Letters</i> , 1996 , 21, 1955-7	3	5
111	Intensity-activated birefringence zero-crossing shift in CuAlSe(2) crystal. <i>Optics Letters</i> , 1990 , 15, 993-5	3	5
110	Second harmonic generation as a method for polarizing and analyzing laser light. <i>Applied Physics B, Photophysics and Laser Chemistry</i> , 1987 , 42, 115-119		5
109	Light by light modulation in semiconductor doped glass. Optical and Quantum Electronics, 1988, 20, 119	-123	5
108	Superoscillatory quartz lens with effective numerical aperture greater than one. <i>Applied Physics Letters</i> , 2020 , 117, 021106	3.4	5
107	Space-time nonseparable pulses: Constructing isodiffracting donut pulses from plane waves and single-cycle pulses. <i>Physical Review A</i> , 2020 , 102,	2.6	5
106	Novel paradigm for integrated photonics circuits: transient interconnection network 2017,		4
105	Super-Oscillatory Imaging of Nanoparticle Interactions with Neurons. <i>Biophysical Journal</i> , 2015 , 108, 479a	2.9	4
104	Plasmono-atomic interactions on a fiber tip. <i>Applied Physics Letters</i> , 2020 , 116, 183101	3.4	4
103	Optical addressing of nanomechanical metamaterials with subwavelength resolution. <i>Applied Physics Letters</i> , 2018 , 113, 081104	3.4	4
102	Metamaterials at the University of Southampton and beyond. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 084009	1.7	4
101	Chirality and anisotropy of planar metamaterials94-157		4

100	Holographically encoded microparticles for bead-based assays. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 055507	3	4
99	The next photonic revolution. <i>Journal of Optics</i> , 2009 , 11, 110202		4
98	Quasi-hexagonal self-organization of nanoparticles upon the laser-controlled deposition of Ga atoms. <i>JETP Letters</i> , 2002 , 76, 112-114	1.2	4
97	Optical switching at ZnSeta interfaces via nanoscale light-induced metallisation. <i>Optics Communications</i> , 2005 , 254, 340-343	2	4
96	Nanostructures + Light = New Optics□ Journal of Optics, 2005, 7, S1-S1		4
95	Optical Properties of Planar Chiral Meta-Materials. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 722, 1031		4
94	Light-induced specular-reflectivity suppression at a gallium/silica interface. <i>Optics Letters</i> , 2000 , 25, 159	945-6	4
93	Specular nonlinear anisotropic polarization effect along fourfold crystal symmetry axes. <i>Optics Letters</i> , 1995 , 20, 356	3	4
92	Coherent and incoherent specular inverse Faraday effect in YBa2Cu3O7\(\textit{ISolid State}\) Communications, 1994 , 90, 287-289	1.6	4
91	Transient optical excitation breaks time-reversibility in GaAs and InSb crystals. <i>Journal of Luminescence</i> , 1994 , 58, 244-247	3.8	4
90	Intensity dependence of thermal nonlinear optical activity in crystals. <i>Applied Physics B, Photophysics and Laser Chemistry</i> , 1989 , 49, 65-67		4
89	Second harmonic generators as a new class of light polarizers and analyzers. <i>Soviet Journal of Quantum Electronics</i> , 1987 , 17, 948-952		4
88	Amplitude and polarization instability of picosecond light pulses exciting a semiconductor optical resonator. <i>Optics Letters</i> , 1983 , 8, 557-9	3	4
87	Optical superoscillation technologies beyond the diffraction limit. <i>Nature Reviews Physics</i> ,	23.6	4
86	Gigahertz Nano-Optomechanical Resonances in a Dielectric SiC-Membrane Metasurface Array. <i>Nano Letters</i> , 2021 , 21, 4563-4569	11.5	4
85	Electrogyration in Metamaterials: Chirality and Polarization Rotatory Power that Depend on Applied Electric Field. <i>Advanced Optical Materials</i> , 2021 , 9, 2001826	8.1	4
84	Observation of Toroidal Light Pulses 2021 ,		4
83	All-dielectric free-electron-driven holographic light sources. <i>Applied Physics Letters</i> , 2018 , 113, 241902	3.4	4

(2007-2017)

82	New Super-Oscillatory Technology for Unlabelled Super-Resolution Cellular Imaging with Polarisation Contrast. <i>Biophysical Journal</i> , 2017 , 112, 186a	2.9	3
81	Optical toroidal response in three-dimensional plasmonic metamaterial 2015,		3
80	Giant Kerr Rotation Enhancement in Magneto-plasmonic Metamaterials 2014,		3
79	Photophysical investigation of charge recombination in CdS/ZnO layers of CuIn(S,Se)2 solar cell. <i>RSC Advances</i> , 2014 , 4, 58372-58376	3.7	3
78	Specular optical activity and specular gyrotropic linear dichroism in semiconductors. <i>Journal of Luminescence</i> , 1994 , 60-61, 36-39	3.8	3
77	Spatio-temporal characterization of ultrashort vector pulses. APL Photonics,	5.2	3
76	Topological insulator metamaterial with giant circular photogalvanic effect. <i>Science Advances</i> , 2021 , 7,	14.3	3
75	Deeply sub-wavelength non-contact optical metrology of sub-wavelength objects. <i>APL Photonics</i> , 2021 , 6, 066107	5.2	3
74	Templated assembly of metal nanoparticle films on polymer substrates. <i>Applied Physics Letters</i> , 2016 , 109, 263105	3.4	3
73	Visualization of Subatomic Movements in Nanostructures. <i>Nano Letters</i> , 2021 , 21, 7746-7752	11.5	3
72	New horizons for nanophotonics. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	2
71	Plasmonic absorption properties of bimetallic metamaterials. <i>Microelectronic Engineering</i> , 2017 , 172, 30-34	2.5	2
70	Controlling light on the nanoscale with chalcogenide thin films 2014 , 471-508		2
69	Negative index in chiral metamaterials 2011 ,		2
68	Electro-optical modulation of sub-terahertz radiation with superconducting metamaterial 2012,		2
67	Active plasmonics 2007 , 109-139		2
66	The magical land between the kingdoms of Nano and Meta. Journal of Optics, 2007, 9,		2
65	Limits of luminescence efficiency enhancement by surface plasmon polaritons 2007,		2

64	Two-dimensional plasmonic metamaterials 2007,		2
63	Mean field theory of metallo-dielectric photonic crystals with magnetic components: the long-wavelength limit 2007,		2
62	Fabrication of plasmonic waveguides for device applications 2007,		2
61	Light-induced reflectivity switching in gallium-on-silica films in the bluegreen spectral region. Optics Communications, 2002, 214, 271-276	2	2
60	Structural phase transition as the mechanism of an optical nonlinearity in a nanoparticle film. <i>Journal of Optics</i> , 2005 , 7, S241-S243		2
59	Layered chiral metallic meta-materials 2002,		2
58	The light-induced structural phase transition in confining gallium and its photonic applications. <i>Journal of Luminescence</i> , 2000 , 87-89, 646-648	3.8	2
57	Optical detection of crystallographic domains in zinc-blende crystals. <i>Applied Physics Letters</i> , 1998 , 73, 1511-1513	3.4	2
56	A new principle of optical diagnostics of broken time reversibility in solids using unpolarized light. <i>Journal of Luminescence</i> , 1994 , 58, 399-402	3.8	2
55	Phase stabilization of a coherent fiber network by single-photon counting. <i>Optics Letters</i> , 2020 , 45, 274	032743	3 2
54	Optomechanical metamaterial nanobolometer. APL Photonics,	5.2	2
53	Ultrafast Nonlinearity of Metallic Indium Across the Liquid-Solid Transition. <i>Springer Series in Chemical Physics</i> , 1996 , 461-462	0.3	2
52	Polarization Effects in Lasers, Spectroscopy and Optoelectronics, PELS 2000. <i>Journal of Optics B:</i> Quantum and Semiclassical Optics, 2001 , 3,		2
51	Reconfigurable hyperbolic metamaterial with negative refraction 2016,		2
50	Second harmonic generation in amorphous silicon-on-silica metamaterial. APL Photonics, 2021 , 6, 03617	10 5.2	2
49	Cellular automata dynamics of nonlinear optical processes in a phase-change material. <i>Applied Physics Reviews</i> , 2021 , 8, 011404	17.3	2
48	Coherent perfect absorption of single photons in a fiber network. <i>Applied Physics Letters</i> , 2019 , 115, 191101	3.4	2
47	Germanium-on-Carborundum Surface Phonon-Polariton Infrared Metamaterial. <i>Advanced Optical Materials</i> , 2021 , 9, 2001652	8.1	2

(1998-2009)

46	Trapped-Mode Resonances in Planar Metamaterials with High Structural Symmetry. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2009 , 201-208	0.2	2
45	Thermal Fluctuations of the Optical Properties of Nanomechanical Photonic Metamaterials. <i>Advanced Optical Materials</i> , 2022 , 10, 2101591	8.1	2
44	Optical Control of Nanomechanical Brownian Motion Eigenfrequencies in Metamaterials. <i>Nano Letters</i> ,	11.5	2
43	Vertical split-ring resonators for plasmon coupling, sensing and metasurface 2015,		1
42	Introducing the metamaterial roadmap. Journal of Optics (United Kingdom), 2016, 18, 090201	1.7	1
41	Non-radiating excitations, vector potential waves and toroidal metamaterials 2013,		1
40	Plasmonic Nanowire Continuum Light Source 2014 ,		1
39	Wavevector selective surface 2014,		1
38	Coherent Excitation-Selective Spectroscopy in Planar Metamaterials 2014,		1
37	Computing with complex optical networks 2014 ,		1
36	Terahertz Bandwidth Optical Nonlinearity of Graphene Metamaterial 2012,		1
35	Active plasmonics: Current status 2009 ,		1
34	Gallium/aluminium nano-composite for nonlinear-optical and plasmonic switching applications 2006 ,		1
33	Nano metamaterials and photonic gratings by nanoimprint and hot embossing 2006,		1
32	Organic electro-optic/silicon photonic materials and devices 2007,		1
31	Gigantic Reflectance Anisotropy of the [110] Face of Cubic ZnSe in the Excitonic Part of the Spectrum. <i>Journal of the Physical Society of Japan</i> , 2000 , 69, 3458-3461	1.5	1
30	Dynamics of light-induced reflectivity switching in gallium films deposited on silica by pulsed laser ablation: errata. <i>Optics Letters</i> , 2001 , 26, 852	3	1
29	Cubic optical nonlinearities of metals in the vicinity of the melting point. <i>Journal of Modern Optics</i> , 1998 , 45, 1009-1018	1.1	1

28	Nonlinear frequency converters as sources and detectors of polarized light with linear polarization degree of 10-9 1992 ,		1
27	Isogyration birefringent filter. Soviet Journal of Quantum Electronics, 1989, 19, 993-994		1
26	GaAs giant[modulation of polarization of ps-light pulses under suppression of exciton resonance. <i>Optical and Quantum Electronics</i> , 1988 , 20, 30-33	2.4	1
25	On Broadening of Excitonic Molecule State under the Giant Two-Photon Excitation in CuCl. <i>Journal of the Physical Society of Japan</i> , 1985 , 54, 2778-2778	1.5	1
24	Using Nonlinear Optical Networks for Optimization: Primer of the Ant Colony Algorithm 2014,		1
23	Metamaterial Optical Diodes for Linearly and Circularly Polarized Light 2010,		1
22	All-Optical Image Recognition Using Metamaterials 2016,		1
21	Ultraviolet hollow-core waveguides with sub-unitary index chalcogenide cladding. <i>Optical Materials Express</i> , 2020 , 10, 2254	2.6	1
20	Cubic optical nonlinearities of metals in the vicinity of the melting point		1
19	Nonlinear control of coherent absorption and its optical signal processing applications. <i>APL Photonics</i> , 2019 , 4, 106109	5.2	1
18	Harmonic Passive Mode-Locking of a Single-Frequency Semiconductor Laser Submitted to Nonlinear Optical Feedback. <i>IEEE Journal of Quantum Electronics</i> , 2006 , 42, 1185-1195	2	0
17	Optical magnetic response without metamaterials. APL Photonics, 2021, 6, 071303	5.2	O
16	Angular electromagnetic response of double-ring metamaterials for TE polarization. <i>Journal of Physics: Conference Series</i> , 2011 , 276, 012086	0.3	
15	Optical metamaterials based on thin metal films: from negative index of refraction to enhanced transmission and to surface wave guidance 2007 , 6638, 33		
14	Polarization dependencies of the enhanced optical transmission through surface polaritonic crystals 2004 , 5554, 197		
13	Nanoscale photonics of structural transformations in gallium 2002 , 4809, 1		
12	Light-Induced Structural Phase Transition in Confining Gallium and Associated Gigantic Optical Nonlinearity. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 543, 275		
11	Specular optical activity in ⊞gS. <i>Thin Solid Films</i> , 1993 , 234, 545-548	2.2	

LIST OF PUBLICATIONS

10	Tunable picosecond and femtosecond sources of quasi-cw laser radiation based on fiber-optic converters. <i>Soviet Journal of Quantum Electronics</i> , 1989 , 19, 424-426	
9	Amplitude and polarization instability of picosecond light pulses exciting a semiconductor optical resonator: erratum. <i>Optics Letters</i> , 1984 , 9, 192	3
8	Chapter 4 Active plasmonics. Advances in Nano-optics and Nano-photonics, 2006, 109-139	
7	Polarization Instability in Crystals with Nonlinear Anisotropy and Nonlinear Gyrotropy 1990 , 253-264	
6	Transient Reflective-Polarization Spectroscopy of Hidden Anisotropy in Cubic Crystals. <i>Springer Series in Chemical Physics</i> , 1994 , 393-394	0.3
5	Violation of Time-Reversibility in Semiconductors by Transient Optical Excitation. <i>NATO ASI Series Series B: Physics</i> , 1994 , 331-336	
4	Controlling Light with Light via Interference on Photonic Metamaterials. <i>Springer Series in Optical Sciences</i> , 2019 , 239-265	0.5
3	Detection of sub-atomic movement in nanostructures. <i>Nanoscale Advances</i> , 2021 , 3, 2213-2216	5.1
2	Photonic Metamaterials: Optical Response of Nanohole Arrays Filled with Chalcogenide Low-Epsilon Media (Advanced Optical Materials 22/2018). <i>Advanced Optical Materials</i> , 2018 , 6, 187008	3 8.1
1	Switchable Metamaterials: A Non-Volatile Chalcogenide Switchable Hyperbolic Metamaterial (Advanced Optical Materials 19/2018). <i>Advanced Optical Materials</i> , 2018 , 6, 1870074	8.1