Zachariah A Page

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2880367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Paper without a Trail: Timeâ€Dependent Encryption using Pillar[5]areneâ€Based Host–Guest Invisible Ink. Advanced Materials, 2022, 34, e2108163.	21.0	68
2	"Invisible―Digital Light Processing 3D Printing with Near Infrared Light. ACS Applied Materials & Interfaces, 2022, 14, 22912-22920.	8.0	16
3	Visible Light Chemical Micropatterning Using a Digital Light Processing Fluorescence Microscope. ACS Central Science, 2022, 8, 67-76.	11.3	3
4	Anion extractants constructed by macrocycle-based anion recognition. Journal of Materials Chemistry A, 2022, 10, 15297-15308.	10.3	11
5	Polystyrene-supported neutral lithium receptor for the recovery of high-purity LiPF ₆ from simulated degraded electrolyte. Journal of Materials Chemistry A, 2022, 10, 14788-14794.	10.3	2
6	Boron dipyrromethene (BODIPY) in polymer chemistry. Polymer Chemistry, 2021, 12, 327-348.	3.9	59
7	Tough Multimaterial Interfaces through Wavelength-Selective 3D Printing. ACS Applied Materials & Interfaces, 2021, 13, 22065-22072.	8.0	28
8	Wavelength-selective light-matter interactions in polymer science. Matter, 2021, 4, 2172-2229.	10.0	42
9	Additives for Ambient 3D Printing with Visible Light. Advanced Materials, 2021, 33, e2104906.	21.0	29
10	Selective Separation of Lithium Chloride by Organogels Containing Strapped Calix[4]pyrroles. Journal of the American Chemical Society, 2021, 143, 20403-20410.	13.7	28
11	Fluorescent materials-based information storage. Materials Chemistry Frontiers, 2020, 4, 1024-1039.	5.9	99
12	Catalyst Halogenation Enables Rapid and Efficient Polymerizations with Visible to Far-Red Light. Journal of the American Chemical Society, 2020, 142, 14733-14742.	13.7	44
13	Removal of Organic Micropollutants from Water by Macrocycle ontaining Covalent Polymer Networks. Angewandte Chemie - International Edition, 2020, 59, 23402-23412.	13.8	78
14	Removal of Organic Micropollutants from Water by Macrocycleâ€Containing Covalent Polymer Networks. Angewandte Chemie, 2020, 132, 23608-23618.	2.0	11
15	Rapid High-Resolution Visible Light 3D Printing. ACS Central Science, 2020, 6, 1555-1563.	11.3	133
16	Understanding Hole Extraction of Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 56068-56075.	8.0	16
17	Molecular recognition of pyrazine <i>N</i> , <i>N</i> ′-dioxide using aryl extended calix[4]pyrroles. Chemical Science, 2020, 11, 5650-5657.	7.4	16
18	Stable Activated Furan and Donor–Acceptor Stenhouse Adduct Polymer Conjugates as Chemical and Thermal Sensors. Macromolecules, 2019, 52, 4370-4375.	4.8	46

ZACHARIAH A PAGE

#	Article	IF	CITATIONS
19	What happens in the dark? Assessing the temporal control of photoâ€mediated controlled radical polymerizations. Journal of Polymer Science Part A, 2019, 57, 268-273.	2.3	81
20	Organic electronics by design: the power of minor atomic and structural changes. Journal of Materials Chemistry C, 2018, 6, 3564-3572.	5.5	21
21	Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines. ACS Central Science, 2018, 4, 216-222.	11.3	12
22	Simultaneous Preparation of Multiple Polymer Brushes under Ambient Conditions using Microliter Volumes. Angewandte Chemie, 2018, 130, 13621-13626.	2.0	15
23	Simultaneous Preparation of Multiple Polymer Brushes under Ambient Conditions using Microliter Volumes. Angewandte Chemie - International Edition, 2018, 57, 13433-13438.	13.8	78
24	Solution Mask Liquid Lithography (SMaLL) for One‧tep, Multimaterial 3D Printing. Advanced Materials, 2018, 30, e1800364.	21.0	143
25	Controlling Dark Equilibria and Enhancing Donor–Acceptor Stenhouse Adduct Photoswitching Properties through Carbon Acid Design. Journal of the American Chemical Society, 2018, 140, 10425-10429.	13.7	121
26	Amino-fulleropyrrolidines as electrotropic additives to enhance organic photovoltaics. Sustainable Energy and Fuels, 2018, 2, 2143-2147.	4.9	9
27	Modular synthesis of asymmetric rylene derivatives. Journal of Materials Chemistry C, 2017, 5, 1052-1056.	5.5	13
28	A Versatile and Highly Selective Colorimetric Sensor for the Detection of Amines. Chemistry - A European Journal, 2017, 23, 3562-3566.	3.3	99
29	A Versatile Approach for In Situ Monitoring of Photoswitches and Photopolymerizations. ChemPhotoChem, 2017, 1, 125-131.	3.0	38
30	Highly Photoluminescent Nonconjugated Polymers for Single-Layer Light Emitting Diodes. ACS Photonics, 2017, 4, 631-641.	6.6	25
31	A di†tert â€butyl acrylate monomer for controlled radical photopolymerization. Journal of Polymer Science Part A, 2017, 55, 801-807.	2.3	7
32	Visible Light-Responsive DASA-Polymer Conjugates. ACS Macro Letters, 2017, 6, 738-742.	4.8	58
33	Novel Strategy for Photopatterning Emissive Polymer Brushes for Organic Light Emitting Diode Applications. ACS Central Science, 2017, 3, 654-661.	11.3	61
34	N-Doped Zwitterionic Fullerenes as Interlayers in Organic and Perovskite Photovoltaic Devices. ACS Energy Letters, 2017, 2, 957-963.	17.4	29
35	Rapid Visible Light-Mediated Controlled Aqueous Polymerization with In Situ Monitoring. ACS Macro Letters, 2017, 6, 1109-1113.	4.8	65
36	Donor-fullerene dyads for energy cascade organic solar cells. Inorganica Chimica Acta, 2017, 468, 192-202.	2.4	10

ZACHARIAH A PAGE

#	Article	IF	CITATIONS
37	Role of Ionic Functional Groups on Ion Transport at Perovskite Interfaces. Advanced Energy Materials, 2017, 7, 1701235.	19.5	37
38	Understanding Interface Engineering for Highâ€Performance Fullerene/Perovskite Planar Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1501606.	19.5	180
39	The Structural Origin of Electron Injection Enhancements with Fulleropyrrolidine Interlayers. Advanced Materials Interfaces, 2016, 3, 1500852.	3.7	10
40	Tunable Visible and Near Infrared Photoswitches. Journal of the American Chemical Society, 2016, 138, 13960-13966.	13.7	210
41	A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions. Advanced Energy Materials, 2016, 6, 1600664.	19.5	56
42	Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics. Accounts of Chemical Research, 2016, 49, 2478-2488.	15.6	109
43	Hydrophilic Conjugated Polymers Prepared by Aqueous Horner–Wadsworth–Emmons Coupling. Macromolecules, 2016, 49, 2526-2532.	4.8	24
44	High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. ACS Applied Materials & Interfaces, 2016, 8, 7070-7076.	8.0	111
45	Finely Tuned Polymer Interlayers Enhance Solar Cell Efficiency. Angewandte Chemie - International Edition, 2015, 54, 11485-11489.	13.8	107
46	Dual Functional Zwitterionic Fullerene Interlayer for Efficient Inverted Polymer Solar Cells. Advanced Energy Materials, 2015, 5, 1500405.	19.5	39
47	Raising efficiency of organic solar cells with electrotropic additives. Applied Physics Letters, 2015, 106, .	3.3	28
48	Tuning the energy gap of conjugated polymer zwitterions for efficient interlayers and solar cells. Journal of Polymer Science Part A, 2015, 53, 327-336.	2.3	20
49	Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids. Chemical Science, 2014, 5, 2368-2373.	7.4	18
50	Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency. Science, 2014, 346, 441-444.	12.6	266
51	Conjugated Polymeric Zwitterions as Efficient Interlayers in Organic Solar Cells. Advanced Materials, 2013, 25, 6868-6873.	21.0	92
52	Conjugated Thiophene-Containing Polymer Zwitterions: Direct Synthesis and Thin Film Electronic Properties. Macromolecules, 2013, 46, 344-351.	4.8	49
53	Hierarchical Helical Assembly of Conjugated Poly(3-hexylthiophene)- <i>block</i> -poly(3-triethylene) Tj ETQq1 1	0.784314 13.7	rgBT /Overloc 207
54	PEGylated silicon nanoparticles: synthesis and characterization. Chemical Communications, 2008, , 6126.	4.1	63

#	Article	IF	CITATIONS
55	Mechanically robust hydrophobized double network hydrogels and their fundamental salt transport properties. Journal of Polymer Science, 0, , .	3.8	1