Zachariah A Page

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2880367/publications.pdf

Version: 2024-02-01

55 papers

3,253 citations

30 h-index 55 g-index

58 all docs 58 docs citations

58 times ranked 4348 citing authors

#	Article	IF	CITATIONS
1	Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency. Science, 2014, 346, 441-444.	12.6	266
2	Tunable Visible and Near Infrared Photoswitches. Journal of the American Chemical Society, 2016, 138, 13960-13966.	13.7	210
3	Hierarchical Helical Assembly of Conjugated Poly(3-hexylthiophene)- <i>block</i> -poly(3-triethylene) Tj $ETQq1\ 1$	0.784314 13.7	rgBT /Overloc
4	Understanding Interface Engineering for Highâ€Performance Fullerene/Perovskite Planar Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1501606.	19.5	180
5	Solution Mask Liquid Lithography (SMaLL) for Oneâ€Step, Multimaterial 3D Printing. Advanced Materials, 2018, 30, e1800364.	21.0	143
6	Rapid High-Resolution Visible Light 3D Printing. ACS Central Science, 2020, 6, 1555-1563.	11.3	133
7	Controlling Dark Equilibria and Enhancing Donor–Acceptor Stenhouse Adduct Photoswitching Properties through Carbon Acid Design. Journal of the American Chemical Society, 2018, 140, 10425-10429.	13.7	121
8	High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7070-7076.	8.0	111
9	Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics. Accounts of Chemical Research, 2016, 49, 2478-2488.	15.6	109
10	Finely Tuned Polymer Interlayers Enhance Solar Cell Efficiency. Angewandte Chemie - International Edition, 2015, 54, 11485-11489.	13.8	107
11	A Versatile and Highly Selective Colorimetric Sensor for the Detection of Amines. Chemistry - A European Journal, 2017, 23, 3562-3566.	3.3	99
12	Fluorescent materials-based information storage. Materials Chemistry Frontiers, 2020, 4, 1024-1039.	5.9	99
13	Conjugated Polymeric Zwitterions as Efficient Interlayers in Organic Solar Cells. Advanced Materials, 2013, 25, 6868-6873.	21.0	92
14	What happens in the dark? Assessing the temporal control of photoâ€mediated controlled radical polymerizations. Journal of Polymer Science Part A, 2019, 57, 268-273.	2.3	81
15	Simultaneous Preparation of Multiple Polymer Brushes under Ambient Conditions using Microliter Volumes. Angewandte Chemie - International Edition, 2018, 57, 13433-13438.	13.8	78
16	Removal of Organic Micropollutants from Water by Macrocycleâ€Containing Covalent Polymer Networks. Angewandte Chemie - International Edition, 2020, 59, 23402-23412.	13.8	78
17	Paper without a Trail: Timeâ€Dependent Encryption using Pillar[5]areneâ€Based Host–Guest Invisible Ink. Advanced Materials, 2022, 34, e2108163.	21.0	68
18	Rapid Visible Light-Mediated Controlled Aqueous Polymerization with In Situ Monitoring. ACS Macro Letters, 2017, 6, 1109-1113.	4.8	65

#	Article	lF	CITATIONS
19	PEGylated silicon nanoparticles: synthesis and characterization. Chemical Communications, 2008, , 6126 .	4.1	63
20	Novel Strategy for Photopatterning Emissive Polymer Brushes for Organic Light Emitting Diode Applications. ACS Central Science, 2017, 3, 654-661.	11.3	61
21	Boron dipyrromethene (BODIPY) in polymer chemistry. Polymer Chemistry, 2021, 12, 327-348.	3.9	59
22	Visible Light-Responsive DASA-Polymer Conjugates. ACS Macro Letters, 2017, 6, 738-742.	4.8	58
23	A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions. Advanced Energy Materials, 2016, 6, 1600664.	19.5	56
24	Conjugated Thiophene-Containing Polymer Zwitterions: Direct Synthesis and Thin Film Electronic Properties. Macromolecules, 2013, 46, 344-351.	4.8	49
25	Stable Activated Furan and Donor–Acceptor Stenhouse Adduct Polymer Conjugates as Chemical and Thermal Sensors. Macromolecules, 2019, 52, 4370-4375.	4.8	46
26	Catalyst Halogenation Enables Rapid and Efficient Polymerizations with Visible to Far-Red Light. Journal of the American Chemical Society, 2020, 142, 14733-14742.	13.7	44
27	Wavelength-selective light-matter interactions in polymer science. Matter, 2021, 4, 2172-2229.	10.0	42
28	Dual Functional Zwitterionic Fullerene Interlayer for Efficient Inverted Polymer Solar Cells. Advanced Energy Materials, 2015, 5, 1500405.	19.5	39
29	A Versatile Approach for In Situ Monitoring of Photoswitches and Photopolymerizations. ChemPhotoChem, 2017, 1, 125-131.	3.0	38
30	Role of Ionic Functional Groups on Ion Transport at Perovskite Interfaces. Advanced Energy Materials, 2017, 7, 1701235.	19.5	37
31	N-Doped Zwitterionic Fullerenes as Interlayers in Organic and Perovskite Photovoltaic Devices. ACS Energy Letters, 2017, 2, 957-963.	17.4	29
32	Additives for Ambient 3D Printing with Visible Light. Advanced Materials, 2021, 33, e2104906.	21.0	29
33	Raising efficiency of organic solar cells with electrotropic additives. Applied Physics Letters, 2015, 106, .	3.3	28
34	Tough Multimaterial Interfaces through Wavelength-Selective 3D Printing. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 22065-22072.	8.0	28
35	Selective Separation of Lithium Chloride by Organogels Containing Strapped Calix[4]pyrroles. Journal of the American Chemical Society, 2021, 143, 20403-20410.	13.7	28
36	Highly Photoluminescent Nonconjugated Polymers for Single-Layer Light Emitting Diodes. ACS Photonics, 2017, 4, 631-641.	6.6	25

#	Article	IF	CITATIONS
37	Hydrophilic Conjugated Polymers Prepared by Aqueous Horner–Wadsworth–Emmons Coupling. Macromolecules, 2016, 49, 2526-2532.	4.8	24
38	Organic electronics by design: the power of minor atomic and structural changes. Journal of Materials Chemistry C, 2018, 6, 3564-3572.	5 . 5	21
39	Tuning the energy gap of conjugated polymer zwitterions for efficient interlayers and solar cells. Journal of Polymer Science Part A, 2015, 53, 327-336.	2.3	20
40	Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids. Chemical Science, 2014, 5, 2368-2373.	7.4	18
41	Understanding Hole Extraction of Inverted Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56068-56075.	8.0	16
42	Molecular recognition of pyrazine <i>N</i> , <i>N</i> ,ê≥²-dioxide using aryl extended calix[4]pyrroles. Chemical Science, 2020, 11, 5650-5657.	7.4	16
43	"Invisible―Digital Light Processing 3D Printing with Near Infrared Light. ACS Applied Materials & Interfaces, 2022, 14, 22912-22920.	8.0	16
44	Simultaneous Preparation of Multiple Polymer Brushes under Ambient Conditions using Microliter Volumes. Angewandte Chemie, 2018, 130, 13621-13626.	2.0	15
45	Modular synthesis of asymmetric rylene derivatives. Journal of Materials Chemistry C, 2017, 5, 1052-1056.	5.5	13
46	Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines. ACS Central Science, 2018, 4, 216-222.	11.3	12
47	Removal of Organic Micropollutants from Water by Macrocycleâ€Containing Covalent Polymer Networks. Angewandte Chemie, 2020, 132, 23608-23618.	2.0	11
48	Anion extractants constructed by macrocycle-based anion recognition. Journal of Materials Chemistry A, 2022, 10, 15297-15308.	10.3	11
49	The Structural Origin of Electron Injection Enhancements with Fulleropyrrolidine Interlayers. Advanced Materials Interfaces, 2016, 3, 1500852.	3.7	10
50	Donor-fullerene dyads for energy cascade organic solar cells. Inorganica Chimica Acta, 2017, 468, 192-202.	2.4	10
51	Amino-fulleropyrrolidines as electrotropic additives to enhance organic photovoltaics. Sustainable Energy and Fuels, 2018, 2, 2143-2147.	4.9	9
52	A di―tert â€butyl acrylate monomer for controlled radical photopolymerization. Journal of Polymer Science Part A, 2017, 55, 801-807.	2.3	7
53	Visible Light Chemical Micropatterning Using a Digital Light Processing Fluorescence Microscope. ACS Central Science, 2022, 8, 67-76.	11.3	3
54	Polystyrene-supported neutral lithium receptor for the recovery of high-purity LiPF ₆ from simulated degraded electrolyte. Journal of Materials Chemistry A, 2022, 10, 14788-14794.	10.3	2

#	Article	IF	CITATIONS
55	Mechanically robust hydrophobized double network hydrogels and their fundamental salt transport properties. Journal of Polymer Science, 0, , .	3.8	1