
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2880081/publications.pdf Version: 2024-02-01

RDUCE FUTCHED

#	Article	IF	CITATIONS
1	Scaling gene expression for cell size control and senescence in Saccharomyces cerevisiae. Current Genetics, 2021, 67, 41-47.	0.8	8
2	Differential Scaling of Gene Expression with Cell Size May Explain Size Control in Budding Yeast. Molecular Cell, 2020, 78, 359-370.e6.	4.5	53
3	<i>mmi1</i> and <i>rep2</i> mRNAs are novel RNA targets of the Mei2 RNA-binding protein during early meiosis in <i>Schizosaccharomyces pombe</i> . Open Biology, 2018, 8, .	1.5	11
4	Re-annotation of 12,495 prokaryotic 16S rRNA 3' ends and analysis of Shine-Dalgarno and anti-Shine-Dalgarno sequences. PLoS ONE, 2018, 13, e0202767.	1.1	22
5	Prokaryotic coding regions have little if any specific depletion of Shine-Dalgarno motifs. PLoS ONE, 2018, 13, e0202768.	1.1	7
6	Extensive recoding of dengue virus type 2 specifically reduces replication in primate cells without gain-of-function in Aedes aegypti mosquitoes. PLoS ONE, 2018, 13, e0198303.	1.1	10
7	Assaying Glycogen and Trehalose in Yeast. Bio-protocol, 2017, 7, e2371.	0.2	7
8	Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S.Âcerevisiae. Molecular Cell, 2016, 62, 546-557.	4.5	71
9	Relative contributions of the structural and catalytic roles of Rrp6 in exosomal degradation of individual mRNAs. Rna, 2016, 22, 1311-1319.	1.6	11
10	The non-homologous end-joining pathway of S. cerevisiae works effectively in G1-phase cells, and religates cognate ends correctly and non-randomly. DNA Repair, 2016, 42, 1-10.	1.3	16
11	A new transcription factor for mitosis: in <i>Schizosaccharomyces pombe</i> , the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression. Nucleic Acids Research, 2015, 43, 6874-6888.	6.5	28
12	Large-scale recoding of an arbovirus genome to rebalance its insect versus mammalian preference. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4749-4754.	3.3	93
13	Reply to Simmonds et al.: Codon pair and dinucleotide bias have not been functionally distinguished. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3635-6.	3.3	25
14	Measurement of average decoding rates of the 61 sense codons in vivo. ELife, 2014, 3, .	2.8	179
15	A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern. Genes and Development, 2013, 27, 2147-2163.	2.7	90
16	Deliberate reduction of hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective live vaccine in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9481-9486.	3.3	91
17	Effects of the Yeast RNA-Binding Protein Whi3 on the Half-Life and Abundance of CLN3 mRNA and Other Targets. PLoS ONE, 2013, 8, e84630.	1.1	43
18	Identification of two functionally redundant RNA elements in the coding sequence of poliovirus using computer-generated design. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14301-14307.	3.3	37

#	Article	IF	CITATIONS
19	Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe. PLoS ONE, 2012, 7, e29917.	1.1	28
20	The Fission Yeast RNA Binding Protein Mmi1 Regulates Meiotic Genes by Controlling Intron Specific Splicing and Polyadenylation Coupled RNA Turnover. PLoS ONE, 2011, 6, e26804.	1.1	73
21	Live attenuated influenza virus vaccines by computer-aided rational design. Nature Biotechnology, 2010, 28, 723-726.	9.4	248
22	King of the Castle: Competition between Repressors and Activators on the Mcm1 Platform. Molecular Cell, 2010, 38, 1-2.	4.5	11
23	Bck2 is a phase-independent activator of cell cycle-regulated genes in yeast. Cell Cycle, 2009, 8, 239-252.	1.3	28
24	Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast. PLoS Biology, 2009, 7, e1000221.	2.6	102
25	Phase Coupled Meta-analysis: sensitive detection of oscillations in cell cycle gene expression, as applied to fission yeast. BMC Genomics, 2009, 10, 440.	1.2	3
26	Tgl4 Lipase: A Big Fat Target for Cell-Cycle Entry. Molecular Cell, 2009, 33, 143-144.	4.5	7
27	Recruitment of Cln3 Cyclin to Promoters Controls Cell Cycle Entry via Histone Deacetylase and Other Targets. PLoS Biology, 2009, 7, e1000189.	2.6	98
28	Virus Attenuation by Genome-Scale Changes in Codon Pair Bias. Science, 2008, 320, 1784-1787.	6.0	580
29	Bound to splice. Nature, 2008, 455, 885-886.	13.7	1
30	Huxley's Revenge: Cell-Cycle Entry, Positive Feedback, and the G1 Cyclins. Molecular Cell, 2008, 31, 307-308.	4.5	0
31	Cyclins in Meiosis: Lost in Translation. Developmental Cell, 2008, 14, 644-645.	3.1	6
32	Cdc28–Clb5 (CDK-S) and Cdc7–Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast. Genes and Development, 2008, 22, 386-397.	2.7	124
33	Meta-Analysis of Microarray Data. , 2007, , 329-352.		1
34	Metabolic cycle, cell cycle, and the finishing kick to Start. Genome Biology, 2006, 7, 107.	13.9	65
35	The Cell Cycle–Regulated Genes of Schizosaccharomyces pombe. PLoS Biology, 2005, 3, e225.	2.6	173
36	Copy Correction and Concerted Evolution in the Conservation of Yeast Genes. Genetics, 2005, 170, 1501-1513.	1.2	11

#	Article	IF	CITATIONS
37	Growth Rate and Cell Size Modulate the Synthesis of, and Requirement for, G 1 -Phase Cyclins at Start. Molecular and Cellular Biology, 2004, 24, 10802-10813.	1.1	65
38	The G 1 Cyclin Cln3 Promotes Cell Cycle Entry via the Transcription Factor Swi6. Molecular and Cellular Biology, 2002, 22, 4402-4418.	1.1	83
39	Biogenesis of Yeast Telomerase Depends on the Importin Mtr10. Molecular and Cellular Biology, 2002, 22, 6046-6055.	1.1	50
40	Transcriptional regulatory networks and the yeast cell cycle. Current Opinion in Cell Biology, 2002, 14, 676-683.	2.6	105
41	Whi3 binds the mRNA of the G ₁ cyclin <i>CLN3</i> to modulate cell fate in budding yeast. Genes and Development, 2001, 15, 2803-2808.	2.7	96
42	Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature, 2000, 406, 90-94.	13.7	353
43	Microarrays and cell cycle transcription in yeast. Current Opinion in Cell Biology, 2000, 12, 710-715.	2.6	46
44	The Est1 Subunit of Yeast Telomerase Binds the Tlc1 Telomerase RNA. Molecular and Cellular Biology, 2000, 20, 1947-1955.	1.1	100
45	Blast ahead. Nature Genetics, 1999, 23, 377-378.	9.4	2
46	Cell cycle synchronization. , 1999, 21, 79-86.		75
47	Genetic Analysis of the Shared Role of CLN3 and BCK2 at the G1-S Transition in Saccharomyces cerevisiae. Genetics, 1999, 153, 1131-1143.	1.2	67
47 48		1.2 13.7	67
	cerevisiae. Génetics, 1999, 153, 1131-1143.		
48	cerevisiae. Genetics, 1999, 153, 1131-1143. Yeast G1 cyclins are unstable in G1 phase. Nature, 1998, 395, 86-89. The mouse genome contains two expressed intronless retroposed pseudogenes for the	13.7	67
48 49	 cerevisiae. Genetics, 1999, 153, 1131-1143. Yeast G1 cyclins are unstable in G1 phase. Nature, 1998, 395, 86-89. The mouse genome contains two expressed intronless retroposed pseudogenes for the sentrin/sumo-1/PIC1 conjugating enzyme Ubc9. Molecular Immunology, 1998, 35, 1057-1067. Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast<i>Saccharomyces</i> 	13.7 1.0	67 10
48 49 50	 cerevisiae. Genetics, 1999, 153, 1131-1143. Yeast G1 cyclins are unstable in G1 phase. Nature, 1998, 395, 86-89. The mouse genome contains two expressed intronless retroposed pseudogenes for the sentrin/sumo-1/PIC1 conjugating enzyme Ubc9. Molecular Immunology, 1998, 35, 1057-1067. Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast<i>Saccharomyces cerevisiae</i> by Microarray Hybridization. Molecular Biology of the Cell, 1998, 9, 3273-3297. Proteome studies of Saccharomyces cerevisiae: Identification and characterization of abundant 	13.7 1.0 0.9	67 10 4,372
48 49 50 51	 cerevisiae. Genetics, 1999, 153, 1131-1143. Yeast G1 cyclins are unstable in G1 phase. Nature, 1998, 395, 86-89. The mouse genome contains two expressed intronless retroposed pseudogenes for the sentrin/sumo-1/PIC1 conjugating enzyme Ubc9. Molecular Immunology, 1998, 35, 1057-1067. Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast<i>Saccharomyces cerevisiae</i> /i>by Microarray Hybridization. Molecular Biology of the Cell, 1998, 9, 3273-3297. Proteome studies ofSaccharomyces cerevisiae: Identification and characterization of abundant proteins. Electrophoresis, 1997, 18, 1347-1360. Association of Human Fas (CD95) with a Ubiquitin-conjugating Enzyme (UBC-FAP). Journal of Biological 	13.7 1.0 0.9 1.3	67 10 4,372 143

#	Article	IF	CITATIONS
55	ASaccharomyces cerevisiae Internet protein resource now available. Electrophoresis, 1995, 16, 1170-1174.	1.3	21
56	Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature, 1995, 373, 78-81.	13.7	486
57	Protein identifications for aSaccharomyces cerevisiae protein database. Electrophoresis, 1994, 15, 1466-1486.	1.3	98
58	Inhibition of Gl cyclin activity by the Ras/cAMP pathway in yeast. Nature, 1994, 371, 342-345.	13.7	205
59	Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast, 1993, 9, 33-42.	0.8	81
60	Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell, 1993, 74, 993-1007.	13.5	356
61	Human D-type cyclin. Cell, 1991, 65, 691-699.	13.5	709
62	Supercoiling and transcription, or vice versa?. Trends in Genetics, 1988, 4, 271-272.	2.9	18
63	Cloning of the vaccinia virus telomere in a yeast plasmid vector. Gene, 1984, 27, 13-21.	1.0	19