Parthasarathi Dastidar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2879289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular gelling agents: can they be designed?. Chemical Society Reviews, 2008, 37, 2699.	38.1	726
2	Coordination polymers: what has been achieved in going from innocent 4,4′-bipyridine to bis-pyridyl ligands having a non-innocent backbone?. Chemical Society Reviews, 2012, 41, 3039.	38.1	204
3	Structure-Property Correlation of a New Family of Organogelators Based on Organic Salts and Their Selective Gelation of Oil from Oil/Water Mixtures. Chemistry - A European Journal, 2004, 10, 5311-5322.	3.3	129
4	First snapshot of a nonpolymeric hydrogelator interacting with its gelling solvents. Chemical Communications, 2005, , 4059.	4.1	117
5	Instant Gelation of Various Organic Fluids Including Petrol at Room Temperature by a New Class of Supramolecular Gelators. Chemistry of Materials, 2006, 18, 1470-1478.	6.7	114
6	Hydrogen bonded supramolecular network in organic salts: crystal structures of acid–base salts of dicarboxylic acids and amines. CrystEngComm, 2002, 4, 135-142.	2.6	99
7	One-Dimensional Chains, Two-Dimensional Corrugated Sheets Having a Cross-Linked Helix in Metalâ^'Organic Frameworks:  Exploring Hydrogen-Bond Capable Backbones and Ligating Topologies in Mixed Ligand Systems. Crystal Growth and Design, 2006, 6, 1903-1909.	3.0	99
8	Structure and Mechanism of 3-Deoxy-d-manno-octulosonate 8-Phosphate Synthase. Journal of Biological Chemistry, 2000, 275, 9476-9484.	3.4	91
9	An Easy To Prepare Organic Salt as a Low Molecular Mass Organic Gelator Capable of Selective Gelation of Oil from Oil/Water Mixtures. Chemistry of Materials, 2003, 15, 3971-3973.	6.7	91
10	Nonpolymeric Hydrogelator Derived fromN-(4-Pyridyl)isonicotinamide. Langmuir, 2004, 20, 10413-10418.	3.5	80
11	Metallogels from Coordination Complexes, Organometallic, and Coordination Polymers. Chemistry - an Asian Journal, 2016, 11, 2484-2498.	3.3	80
12	ls a Crystal Engineering Approach Useful in Designing Metallogels? A Case Study. Crystal Growth and Design, 2010, 10, 4976-4986.	3.0	79
13	A New Series of Zn ^{II} Coordination Polymer Based Metallogels Derived from Bis-pyridyl-bis-amide Ligands: A Crystal Engineering Approach. Crystal Growth and Design, 2011, 11, 328-336.	3.0	77
14	Gel Sculpture: Moldable, Loadâ€Bearing and Selfâ€Healing Nonâ€Polymeric Supramolecular Gel Derived from a Simple Organic Salt. Chemistry - A European Journal, 2012, 18, 8057-8063.	3.3	77
15	From Diamondoid Network to (4,4) Net:Â Effect of Ligand Topology on the Supramolecular Structural Diversity. Inorganic Chemistry, 2005, 44, 6933-6935.	4.0	76
16	Supramolecular assemblies in salts and co-crystals of imidazoles with dicarboxylic acids. CrystEngComm, 2003, 5, 358.	2.6	74
17	Metal–organic frameworks derived from bis-pyridyl-bis-amide ligands :  Effect of positional isomerism of the ligands, hydrogen bonding backbone, counter anions on the supramolecular structures and selective crystallization of the sulfate anion. CrystEngComm, 2009, 11, 796.	2.6	71
18	New Series of Organogelators Derived from a Combinatorial Library of Primary Ammonium	6.7	68

#	Article	IF	CITATIONS
19	Hydrogen-bond-directed self-assembly of D-(+)-dibenzoyltartaric acid and 4-aminopyridine: optical nonlinearities and stoichiometry-dependent novel structural features. Chemistry of Materials, 1994, 6, 531-537.	6.7	67
20	Structural Studies of a New Low Molecular Mass Organic Gelator for Organic Liquids Based on Simple Salt. Chemistry of Materials, 2003, 15, 2136-2140.	6.7	67
21	Supramolecular Assembly of Functionalized Metalloporphyrins. Porous Crystalline Networks of Zinc-Tetra(4-Carboxyphenyl)Porphyrin. Supramolecular Chemistry, 1996, 7, 257-270.	1.2	66
22	Ascertaining the 1D Hydrogen-Bonded Network in Organic Ionic Solids. Crystal Growth and Design, 2005, 5, 1545-1553.	3.0	64
23	Isomerism in Coordination Complexes and Polymers Derived from Bispyridylurea Ligands:  Effect of Solvents, Conformational Flexibility, and Positional Isomerism of the Ligands. Crystal Growth and Design, 2007, 7, 2096-2105.	3.0	64
24	Metal-Assisted Unusual Hydroxylation at the Carbon Atom of the Triazine Ring in Dinuclear Ruthenium(II) and Osmium(II) Complexes Bridged by 2,4,6-Tris(2-pyridyl)-1,3,5-triazine:Â Synthesis, Structural Characterization, Stereochemistry, and Electrochemical Studies. Inorganic Chemistry, 2000, 39, 14-22.	4.0	63
25	Facile Syntheses of a Class of Supramolecular Gelator Following a Combinatorial Library Approach: Dynamic Light Scattering and Small-Angle Neutron Scattering Studies. Chemistry of Materials, 2005, 17, 741-748.	6.7	63
26	Nonpolymeric Hydrogelators Derived from Trimesic Amides. Chemistry of Materials, 2004, 16, 2332-2335.	6.7	61
27	Zn(II) metal–organic frameworks (MOFs) derived from a bis-pyridyl-bis-urea ligand: effects of crystallization solvents on the structures and anion binding properties. CrystEngComm, 2008, 10, 1565.	2.6	61
28	Hydrogen-bonded microporous network, helix and 1-D zigzag chains in MOFs of Zn(ii): studying the effects of ligating topologies, hydrogen bonding backbone and counter-anions. CrystEngComm, 2006, 8, 805.	2.6	58
29	Designing a simple organic salt-based supramolecular topical gel capable of displaying in vivo self-delivery application. Chemical Communications, 2014, 50, 1671.	4.1	58
30	Remarkably Stable Porous Assembly of Nanorods Derived from a Simple Metalâ^'Organic Framework. Crystal Growth and Design, 2007, 7, 205-207.	3.0	57
31	Composites of N,N′-bis-(pyridyl) urea-dicarboxylic acid as new hydrogelators—a crystal engineering approach. Tetrahedron, 2007, 63, 7386-7396.	1.9	54
32	Homo- or Heterosynthon? A Crystallographic Study on a Series of New Cocrystals Derived from Pyrazinecarboxamide and Various Carboxylic Acids Equipped with Additional Hydrogen Bonding Sites. Crystal Growth and Design, 2012, 12, 2533-2542.	3.0	54
33	Supramolecular Synthons in Noncovalent Synthesis of a Class of Gelators Derived from Simple Organic Salts: Instant Gelation of Organic Fluids at Room Temperature via in Situ Synthesis of the Gelators. Journal of Organic Chemistry, 2009, 74, 7111-7121.	3.2	53
34	A Borromean Weave Coordination Polymer Sustained by Ureaâ´'Sulfate Hydrogen Bonding and Its Selective Anion Separation Properties. Crystal Growth and Design, 2010, 10, 483-487.	3.0	51
35	Supramolecular Synthons in Designing Low Molecular Mass Gelling Agents: <scp>L</scp> â€Amino Acid Methyl Ester Cinnamate Salts and their Antiâ€Solventâ€Induced Instant Gelation. Chemistry - an Asian Journal, 2011, 6, 1038-1047.	3.3	51
36	Exploring conformationally flexible hydrogen-bond-functionalized ligand and counter anions in metal–organic frameworks of Cu(ii). New Journal of Chemistry, 2006, 30, 1267-1275.	2.8	48

#	Article	IF	CITATIONS
37	Combinatorial Library of Primaryalkylammonium Dicarboxylate Gelators: A Supramolecular Synthon Approach. Langmuir, 2009, 25, 8742-8750.	3.5	44
38	A crystal engineering rationale in designing a CdII coordination polymer based metallogel derived from a C3 symmetric tris-amide-tris-carboxylate ligand. Soft Matter, 2012, 8, 7623.	2.7	44
39	Secondary Building Unit (SBU) Controlled Formation of a Catalytically Active Metal–Organic Polyhedron (MOP) Derived from a Flexible Tripodal Ligand. Crystal Growth and Design, 2014, 14, 1331-1337.	3.0	44
40	Tandem Cyclizationâ^'Cycloaddition Behavior of Rhodium Carbenoids with Carbonyl Compounds: Stereoselective Studies on the Construction of Novel Epoxy-Bridged Tetrahydropyranone Frameworks. Journal of Organic Chemistry, 2002, 67, 8019-8033.	3.2	43
41	Facile preparation and structure–property correlation of low molecular mass organic gelators derived from simple organic salts. Journal of Materials Chemistry, 2005, 15, 2606.	6.7	43
42	An unprecedented all helical 3D network and a rarely observed non-interpenetrated octahedral network in homochiral Cu(II) MOFs: effect of steric bulk and π–π stacking interactions of the ligand backbone. CrystEngComm, 2009, 11, 746.	2.6	43
43	Metallogels Derived from Silver Coordination Polymers of <i>C</i> ₃ â€Symmetric Tris(pyridylamide) Tripodal Ligands: Synthesis of Ag Nanoparticles and Catalysis. Chemistry - A European Journal, 2015, 21, 255-268.	3.3	42
44	Designing Supramolecular Gelators: Challenges, Frustrations, and Hopes. Gels, 2019, 5, 15.	4.5	42
45	An easy access to an organometallic low molecular weight gelator: a crystal engineering approach. Tetrahedron Letters, 2008, 49, 3052-3055.	1.4	41
46	Nâ^'H···Cl2â^'M Synthon as a Structure-Directing Tool:  Crystal Structures of Some Perchlorometallates. Crystal Growth and Design, 2006, 6, 216-223.	3.0	40
47	Supramolecular Synthon Approach in Designing Molecular Gels for Advanced Therapeutics. Advanced Therapeutics, 2019, 2, 1800061.	3.2	40
48	Cation-Induced Supramolecular Isomerism in the Hydrogen-Bonded Network of Secondary Ammonium Monocarboxylate Salts:  A New Class of Organo Gelator and Their Structures. Crystal Growth and Design, 2006, 6, 2114-2121.	3.0	38
49	Supramolecular Hydrogen Bond Isomerism in Organic Salts:  A Transition from 0D to 1D. Crystal Growth and Design, 2006, 6, 1022-1026.	3.0	37
50	Facile Synthesis of Oxatricyclic Systems with Various Ring Sizes and Substituents. Tetrahedron, 2000, 56, 6307-6318.	1.9	33
51	Exploring hydrogen-bond capable backbone and ligating topologies: Co(II) coordination polymers derived from mixed ligand systems. Journal of Molecular Structure, 2006, 796, 139-145.	3.6	33
52	β-Amino Acid and Amino-Alcohol Conjugation of a Nonsteroidal Anti-Inflammatory Drug (NSAID) Imparts Hydrogelation Displaying Remarkable Biostability, Biocompatibility, and Anti-Inflammatory Properties. Langmuir, 2013, 29, 10254-10263.	3.5	33
53	Metalloporphyrin-Based Inclusion Materials:  Exploiting Ligating Topologies and Hydrogen-Bonding Backbones in Generating New Supramolecular Architectures. Inorganic Chemistry, 2007, 46, 7351-7361.	4.0	31
54	Solvent-Driven Structural Diversities in Zn ^{II} Coordination Polymers and Complexes Derived from Bis-pyridyl Ligands Equipped with a Hydrogen-Bond-Capable Urea Backbone. Crystal Growth and Design, 2012, 12, 6061-6067.	3.0	31

#	Article	IF	CITATIONS
55	Ferrocene based organometallic gelators: a supramolecular synthon approach. Soft Matter, 2011, 7, 3634.	2.7	30
56	Conformation dependent network structures in the coordination polymers derived from pyridylisonicotinamides, carboxylates and Co(ii): Entrapment of (H2O)14 water cluster of an unprecedented topology. CrystEngComm, 2007, 9, 895.	2.6	29
57	Ligating topology and counter anion controlled formation of discrete metallo-macrocycle and 2D corrugated sheet in coordination compounds derived from a bis-pyridyl-bis-amide ligand and Cd (II)salts. Inorganic Chemistry Communication, 2008, 11, 636-642.	3.9	29
58	Metalla-macro-tricyclic cryptands: anion encapsulation and selective separation of sulfate via in situ crystallization. New Journal of Chemistry, 2010, 34, 2458.	2.8	29
59	Cull Coordination Polymers Capable of Gelation and Selective SO4–2 Separation. Crystal Growth and Design, 2012, 12, 4135-4143.	3.0	29
60	Metallogels and Silver Nanoparticles Generated from a Series of Transition Metal-Based Coordination Polymers Derived from a New Bis-pyridyl-bis-amide Ligand and Various Carboxylates. Crystal Growth and Design, 2015, 15, 4635-4645.	3.0	29
61	Supramolecular structural diversities in the metal–organic frameworks derived from pyridylamide ligands: studying the effects of ligating topologies, hydrogen bonding backbone of the ligands and counter anions. CrystEngComm, 2007, 9, 548-555.	2.6	28
62	Single-Crystal-to-Single-Crystal Breathing and Guest Exchange in Co ^{II} Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 5247-5259.	3.0	28
63	Structures and Gelation Properties of a Series of Salts Derived from an Alicyclic Dicarboxylic Acid and n-Alkyl Primary Amines. Crystal Growth and Design, 2008, 8, 4144-4149.	3.0	27
64	Exploiting Supramolecular Synthons in Designing Gelators Derived from Multiple Drugs. Chemistry - A European Journal, 2014, 20, 15320-15324.	3.3	27
65	Rationally Developed Metallogelators Derived from Pyridyl Derivatives of NSAIDs Displaying Anti-Inflammatory and Anticancer Activities. ACS Applied Materials & Interfaces, 2018, 10, 30649-30661.	8.0	27
66	Mixed Ligand Coordination Polymers for Metallogelation and Iodine Adsorption. Crystal Growth and Design, 2019, 19, 470-478.	3.0	27
67	Supramolecular Chirality in Organoâ€, Hydroâ€, and Metallogels Derived from Bisâ€amides of <scp>L</scp> â€(+)â€Tartaric Acid: Formation of Highly Aligned 1D Silica Fibers and Evidence of 5â€c Net SnS Topology in a Metallogel Network. Chemistry - A European Journal, 2012, 18, 13079-13090.	3.3	26
68	From Nonfunctional Lamellae to Functional Nanotubes. Organic Letters, 2006, 8, 1271-1274.	4.6	25
69	Selective Separation of the Sulfate Anion by In Situ Crystallization of CdII Coordination Compounds Derived from Bis(pyridyl) Ligands Equipped with a Urea/Amide Hydrogen-Bonding Backbone. European Journal of Inorganic Chemistry, 2010, 2010, 3770-3779.	2.0	25
70	Supramolecular Gels by Design: Towards the Development of Topical Gels for Selfâ€Đelivery Application. Chemistry - A European Journal, 2016, 22, 9257-9266.	3.3	25
71	Coordination Polymers Derived from Nonâ€Steroidal Antiâ€Inflammatory Drugs for Cell Imaging and Drug Delivery. Chemistry - A European Journal, 2016, 22, 988-998.	3.3	25
72	Microporous Nanotubular Self-Assembly of a Molecular Chair. Crystal Growth and Design, 2009, 9, 2979-2983.	3.0	24

#	Article	IF	CITATIONS
73	Handâ€Ground Nanoscale Zn ^{II} â€Based Coordination Polymers Derived from NSAIDs: Cell Migration Inhibition of Human Breast Cancer Cells. Chemistry - A European Journal, 2017, 23, 5736-5747.	3.3	24
74	A Practical Approach To Produce Near-Spherical Common Salt Crystals with Better Flow Characteristics. Crystal Growth and Design, 2006, 6, 1591-1594.	3.0	23
75	Coordination polymers derived from a bis-pyridyl-bis-amide ligand: Supramolecular structural diversities and anion binding properties. Inorganica Chimica Acta, 2010, 363, 1367-1376.	2.4	23
76	Rational Approach Towards Designing Metallogels From a Ureaâ€Functionalized Pyridyl Dicarboxylate: Antiâ€inflammatory, Anticancer, and Drug Delivery. Chemistry - an Asian Journal, 2019, 14, 194-204.	3.3	23
77	Noncovalent Syntheses of Supramolecular Organo Gelators. Crystal Growth and Design, 2006, 6, 763-768.	3.0	22
78	An Easy Access to Organic Saltâ€Based Stimuliâ€Responsive and Multifunctional Supramolecular Hydrogels. Chemistry - A European Journal, 2016, 22, 9267-9276.	3.3	22
79	Anchoring Drugs to a Zinc(II) Coordination Polymer Network: Exploiting Structural Rationale toward the Design of Metallogels for Drug-Delivery Applications. Inorganic Chemistry, 2021, 60, 3218-3231.	4.0	22
80	High-Throughput Crystal Engineering Based Synthesis of Supramolecular Gels: Blue-Emitting Fluorescent Gold Clusters Synthesized and Stabilized on the Gel-Bed. Crystal Growth and Design, 2014, 14, 11-14.	3.0	21
81	Remarkable Shape‣ustaining, Loadâ€Bearing, and Selfâ€Healing Properties Displayed by a Supramolecular Gel Derived from a Bisâ€pyridylâ€bisâ€amide of <scp>L</scp> â€Phenyl Alanine. Chemistry - an Asian Journal, 2014, 9, 2475-2482.	3.3	21
82	Reverse thermal gelation of aromatic solvents by a series of easily accessible organic salt based gelators. Soft Matter, 2012, 8, 2595.	2.7	20
83	Secondary Ammonium Dicarboxylate (SAD)—A Supramolecular Synthon in Designing Low Molecular Weight Gelators Derived from Azo-Dicarboxylates. Crystal Growth and Design, 2012, 12, 5917-5924.	3.0	20
84	Cetirizine derived supramolecular topical gel in action: rational design, characterization and in vivo self-delivery application in treating skin allergy in mice. Journal of Materials Chemistry B, 2015, 3, 6634-6644.	5.8	20
85	Stimuliâ€Responsive Metallogels for Synthesizing Ag Nanoparticles and Sensing Hazardous Gases. Chemistry - an Asian Journal, 2018, 13, 1941-1949.	3.3	20
86	Multidrugâ€Containing, Saltâ€Based, Injectable Supramolecular Gels for Selfâ€Delivery, Cell Imaging and Other Materials Applications. Chemistry - A European Journal, 2016, 22, 14929-14939.	3.3	19
87	Rhodium generated carbonyl ylides with p -quinones: synthesis of oxa-bridged polycyclic systems. Tetrahedron, 2001, 57, 7009-7019.	1.9	18
88	Construction of Fused Cyclooctanoid Ring Systems via Seven-Membered Ring Carbonyl Ylides. Bulletin of the Chemical Society of Japan, 2002, 75, 801-811.	3.2	18
89	Supramolecular Hydrogel Derived from a <i>C</i> ₃ -Symmetric Boronic Acid Derivative for Stimuli-Responsive Release of Insulin and Doxorubicin. Langmuir, 2018, 34, 685-692.	3.5	18
90	Sequestering Hydrated Fluoride in a Three-Dimensional Non-Interpenetrated Octahedral Coordination Polymer via a Single-Crystal-to-Single-Crystal Fashion. Crystal Growth and Design, 2012, 12, 3369-3373.	3.0	17

#	Article	IF	CITATIONS
91	Crystal Engineering Approach toward Selective Formation of an Asymmetric Supramolecular Synthon in Primary Ammonium Monocarboxylate (PAM) Salts and Their Gelation Studies. Crystal Growth and Design, 2014, 14, 2254-2262.	3.0	17
92	Zn(II)-Coordination Polymers with a Right- and Left-Handed Twist: Multifunctional Metal–Organic Hybrid for Dye Adsorption and Drug Delivery. Crystal Growth and Design, 2020, 20, 7411-7420.	3.0	17
93	Primary Ammonium Monocarboxylate Synthon in Designing Supramolecular Gels: A New Series of Chiral Lowâ€Molecularâ€Weight Gelators Derived from Simple Organic Salts that are Capable of Generating and Stabilizing Gold Nanoparticles. Chemistry - an Asian Journal, 2013, 8, 3022-3031.	3.3	16
94	Novel Intermolecular [3 + 2] Cycloaddition Reaction of Carbonyl Ylides with Fulvenes: Entry into the Oxatetracyclo[6.5.1.01,6.09,13]tetradecene Ring System. Synlett, 2001, 2001, 1407-1410.	1.8	15
95	Coordination Polymers in Selective Separation of Cations and Anions: A Series of Rarely Observed All Helical Three-Dimensional Coordination Polymers Derived from Various Chiral Amino Acid Based Bis-pyridyl-bis-amide Ligands. Crystal Growth and Design, 2011, 11, 5592-5597.	3.0	15
96	Peptide Conjugates of a Nonsteroidal Antiâ€Inflammatory Drug as Supramolecular Gelators: Synthesis, Characterization, and Biological Studies. Chemistry - an Asian Journal, 2014, 9, 3196-3206.	3.3	15
97	A New Series of Cu ^{II} Coordination Polymers Derived from Bis-pyridyl-bis-urea Ligands and Various Dicarboxylates and Their Role in Methanolysis of Epoxide Ring-Opening Catalysis. Crystal Growth and Design, 2012, 12, 5546-5554.	3.0	14
98	Probing the Oâ<⁻Br–Br halogen bonding in X-ray crystal structures with ab initio calculations. CrystEngComm, 2012, 14, 1833.	2.6	13
99	Supramolecular Synthon Transferability and Gelation by Diprimary Ammonium Monocarboxylate Salts. Crystal Growth and Design, 2012, 12, 5864-5868.	3.0	13
100	Multifunctional single-layered vesicles derived from Cu(ii)-metal–organic-polyhedra. Chemical Communications, 2016, 52, 13124-13127.	4.1	13
101	Design and Synthesis of Zn II oordination Polymers Anchored with NSAIDs: Metallovesicle Formation and Multiâ€drug Delivery. Chemistry - an Asian Journal, 2020, 15, 503-510.	3.3	13
102	Preliminary X-ray analysis of a new crystal form of theEscherichia coliKDO8P synthase. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 516-519.	2.5	12
103	Anions as additive and template in tuning metallasupramolecular architecture in Cullcoordination compounds derived froml-amino acid based chiral ligands. CrystEngComm, 2013, 15, 245-248.	2.6	12
104	New Series of Zn ^{II} /Cd ^{II} Mixed Ligand Coordination Polymers: Toward the Design of Metallogels. Crystal Growth and Design, 2015, 15, 5075-5085.	3.0	12
105	Salt metathesis for developing injectable supramolecular metallohydrogelators as a multi-drug-self-delivery system. Chemical Communications, 2016, 52, 13811-13814.	4.1	12
106	A supramolecular hydrogel derived from a simple organic salt capable of proton conduction. Chemical Communications, 2020, 56, 5251-5254.	4.1	12
107	Multi-NSAID-based Zn(<scp>ii</scp>) coordination complex-derived metallogelators/metallogels as plausible multi-drug self-delivery systems. Chemical Communications, 2022, 58, 969-972.	4.1	12
108	A supramolecular topical gel derived from a non-steroidal anti-inflammatory drug, fenoprofen, is capable of treating skin inflammation in mice. Organic and Biomolecular Chemistry, 2015, 13, 2300-2309.	2.8	11

#	Article	IF	CITATIONS
109	Nanoscale Mn ^{II} â€Coordination Polymers for Cell Imaging and Heterogeneous Catalysis. Chemistry - A European Journal, 2016, 22, 18963-18974.	3.3	11
110	Nitrile-Containing Terpyridyl Zn(II)-Coordination Polymer-Based Metallogelators Displaying Helical Structures: Synthesis, Structures, and "Druglike―Action against B16-F10 Melanoma Cells. ACS Applied Materials & Interfaces, 2023, 15, 25098-25109.	8.0	11
111	Extending Primary Ammonium Dicarboxylate (PAD) to Diprimary Ammonium Dicarboxylate (DPAD) Synthon and Its Implication in Supramolecular Gelation. Crystal Growth and Design, 2013, 13, 4559-4570.	3.0	10
112	Supramolecular Gels Derived from the Salts of Variously Substituted Phenylacetic Acid and Dicyclohexylamine: Design, Synthesis, Structures, and Dye Adsorption. Chemistry - an Asian Journal, 2018, 13, 552-559.	3.3	10
113	Easy Access to Supramolecular Gels of the Nonsteroidal Antiâ€inflammatory Drug Diflunisal: Synthesis, Characterization, and Plausible Biomedical Applications. Chemistry - an Asian Journal, 2015, 10, 2427-2436.	3.3	9
114	An easy access to topical gels of an anti-cancer prodrug (5-fluorouracil acetic acid) for self-drug-delivery applications. Chemical Communications, 2019, 55, 7683-7686.	4.1	9
115	Studying fluorous interactions in a series of coordination compounds derived from mono-pyridyl ligands equipped with hydrogen bonding functionality: exploiting anionâ<'i€F interaction in separating ClO4â^' anion from a competing mixture of anions. CrystEngComm, 2013, 15, 9415.	2.6	8
116	The role of secondary ammonium cations in controlling the conformation of C ₃ -symmetric acid moieties and its implication for the design of supramolecular capsules. CrystEngComm, 2014, 16, 4867-4876.	2.6	8
117	Rationally Developed Organic Salts of Tolfenamic Acid and Its βâ€Alanine Derivatives for Dual Purposes as an Antiâ€Inflammatory Topical Gel and Anticancer Agent. Chemistry - an Asian Journal, 2017, 12, 792-803.	3.3	8
118	Supramolecular Synthon Approach in Designing Organic Sulfonates as Supramolecular Gelators: An Easily Accessible Topical Gel with Antibacterial Properties. Chemistry of Materials, 2021, 33, 2274-2288.	6.7	8
119	Crystal structure of the inclusion complex of cholic acid with 4-aminopyridine: a novel supramolecular architecture of cholic acid. CrystEngComm, 2000, 2, 49.	2.6	7
120	Supramolecular Synthon Approach in Developing Antiâ€Inflammatory Topical Gels for Inâ€Vivo Selfâ€Delivery. Chemistry - A European Journal, 2017, 23, 15623-15627.	3.3	7
121	Supramolecular Hydrogels Developed from Mafenide and Indomethacin as a Plausible Multidrug Self-Delivery System as Antibacterial and Anti-inflammatory Topical Gels. ACS Applied Bio Materials, 2022, 5, 610-621.	4.6	7
122	Chiral gels derived from secondary ammonium salts of (1 <i>R</i> ,3 <i>S</i>)-(+)-camphoric acid. Beilstein Journal of Organic Chemistry, 2010, 6, 848-858.	2.2	6
123	Coordination polymers derived from pyridyl carboxylate ligands having an amide backbone: an attempt towards the selective separation of Cull cation following in situ crystallization under competitive conditions. CrystEngComm, 2014, 16, 7815-7829.	2.6	6
124	Exfoliated Nanosheets of a Cu ^{II} Coordination Polymer Modulate Enzyme Activity of α hymotrypsin. Chemistry - A European Journal, 2018, 24, 11297-11302.	3.3	6
125	Chapter 2. Designing Soft Supramolecular Materials Using Intermolecular Interactions. Monographs in Supramolecular Chemistry, 0, , 37-74.	0.2	6
126	Studies of non-linear optical organic materials: crystal and molecular structure of 2-dicyanomethylene-1,3-dioxolane. Journal of Materials Chemistry, 1991, 1, 1057.	6.7	5

#	Article	IF	CITATIONS
127	Rheoreversible Metallogels Derived from Coordination Polymers. Chemistry - an Asian Journal, 2018, 13, 1474-1484.	3.3	5
128	Simple Organic Salts Having a Naphthalenediimide (NDI) Core Display Multifunctional Properties: Gelation, Anticancer and Semiconducting Properties. Chemistry - an Asian Journal, 2018, 13, 170-180.	3.3	5
129	Designing Metallogelators Derived from NSAIDâ€based Zn(II) Coordination Complexes for Drugâ€Delivery Applications. Chemistry - an Asian Journal, 2020, 15, 3558-3567.	3.3	4
130	Structural Rationale towards Designing Coordination Polymer Based Metallogels Displaying Anti ancer and Antiâ€Bacterial Properties. ChemistrySelect, 2021, 6, 13992-14004.	1.5	4
131	3,3′-{Ethane-1,2-diylbis[carbonylbis(azanediyl)]}dipyridinium tetrachloridoplatinate(II). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, m270-m270.	0.2	2
132	Aggregation enhanced emission (AEE) in organic salt: A structure-property correlation based on single crystal studies. Journal of Chemical Sciences, 2014, 126, 1357-1362.	1.5	2
133	Exploring Orthogonal Hydrogen Bonding towards Designing Organicâ€Saltâ€Based Supramolecular Gelators: Synthesis, Structures, and Anticancer Properties. Chemistry - an Asian Journal, 2018, 13, 1366-1378.	3.3	2
134	Selfâ€Assembly of Spherical Organic Molecules to Form Hollow Vesicular Structures in Water for Encapsulation of an Anticancer Drug and Its Release. Chemistry - an Asian Journal, 2019, 14, 1992-1999.	3.3	2
135	Supramolecular Gels Derived from Simple Organic Salts of Flufenamic Acid: Design, Synthesis, Structures, and Plausible Biomedical Application. ACS Biomaterials Science and Engineering, 2019, 5, 2180-2189.	5.2	2
136	Cu(II)â€Metallacryptands Selfâ€Assembled to Vesicular Aggregates Capable of Encapsulating and Transporting an Anticancer Drug Inside Cancer Cells. Macromolecular Bioscience, 2020, 20, e2000044.	4.1	2
137	<i>catena</i> -Poly[[[triaquasulfatozinc(II)]-μ-3,3′-bis(3-pyridyl)-1,1′-(<i>m</i> -phenylene)diurea] methano solvate monohydrate]. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, m413-m414.	0.2	2
138	Inside Cover: Supramolecular Synthons in Designing Low Molecular Mass Gelling Agents: L-Amino Acid Methyl Ester Cinnamate Salts and their Anti-Solvent-Induced Instant Gelation (Chem. Asian J. 4/2011). Chemistry - an Asian Journal, 2011, 6, 950-950.	3.3	0