Ruud A Bank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/287919/publications.pdf

Version: 2024-02-01

80 papers

7,196 citations

66234 42 h-index 78 g-index

83 all docs 83 docs citations

83 times ranked 10275 citing authors

#	Article	IF	CITATIONS
1	Collagen release by human hepatic stellate cells requires vitamin C and is efficiently blocked by hydroxylase inhibition. FASEB Journal, 2021, 35, e21219.	0.2	12
2	Glimpses into the molecular pathogenesis of Peyronie's disease. Aging Male, 2020, 23, 962-970.	0.9	11
3	Inhibition of tyrosine kinase receptor signaling attenuates fibrogenesis in an ex vivo model of human renal fibrosis. American Journal of Physiology - Renal Physiology, 2020, 318, F117-F134.	1.3	12
4	Exploring organ-specific features of fibrogenesis using murine precision-cut tissue slices. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165582.	1.8	12
5	Intestinal stenosis in Crohn's disease shows a generalized upregulation of genes involved in collagen metabolism and recognition that could serve as novel anti-fibrotic drug targets. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482095257.	1.4	9
6	KRAB-Induced Heterochromatin Effectively Silences PLOD2 Gene Expression in Somatic Cells and Is Resilient to $TGF\hat{l}^21$ Activation. International Journal of Molecular Sciences, 2020, 21, 3634.	1.8	6
7	Macromolecular Crowding as a Tool to Screen Anti-fibrotic Drugs: The Scar-in-a-Jar System Revisited. Frontiers in Medicine, 2020, 7, 615774.	1.2	10
8	Predictive Value of Precision-Cut Kidney Slices as an Ex Vivo Screening Platform for Therapeutics in Human Renal Fibrosis. Pharmaceutics, 2020, 12, 459.	2.0	16
9	Collagen cross-linking mediated by lysyl hydroxylase 2: an enzymatic battlefield to combat fibrosis. Essays in Biochemistry, 2019, 63, 377-387.	2.1	48
10	Limiting biomaterial fibrosis. Nature Materials, 2019, 18, 781-781.	13.3	18
10		13.3	18
	Limiting biomaterial fibrosis. Nature Materials, 2019, 18, 781-781. No Effects of Hyperosmolar Culture Medium on Tissue Regeneration by Human Degenerated Nucleus		
11	Limiting biomaterial fibrosis. Nature Materials, 2019, 18, 781-781. No Effects of Hyperosmolar Culture Medium on Tissue Regeneration by Human Degenerated Nucleus Pulposus Cells Despite Upregulation Extracellular Matrix Genes. Spine, 2018, 43, 307-315. αII-spectrin and βII-spectrin do not affect TGFβ1-induced myofibroblast differentiation. Cell and Tissue	1.0	8
11 12	Limiting biomaterial fibrosis. Nature Materials, 2019, 18, 781-781. No Effects of Hyperosmolar Culture Medium on Tissue Regeneration by Human Degenerated Nucleus Pulposus Cells Despite Upregulation Extracellular Matrix Genes. Spine, 2018, 43, 307-315. αII-spectrin and βII-spectrin do not affect TGFβ1-induced myofibroblast differentiation. Cell and Tissue Research, 2018, 374, 165-175. Biomaterial Encapsulation Is Enhanced in the Early Stages of the Foreign Body Reaction During Conditional Macrophage Depletion in Transgenic Macrophage Fas-Induced Apoptosis Mice .	1.0	3
11 12 13	Limiting biomaterial fibrosis. Nature Materials, 2019, 18, 781-781. No Effects of Hyperosmolar Culture Medium on Tissue Regeneration by Human Degenerated Nucleus Pulposus Cells Despite Upregulation Extracellular Matrix Genes. Spine, 2018, 43, 307-315. αII-spectrin and βII-spectrin do not affect TGFβ1-induced myofibroblast differentiation. Cell and Tissue Research, 2018, 374, 165-175. Biomaterial Encapsulation Is Enhanced in the Early Stages of the Foreign Body Reaction During Conditional Macrophage Depletion in Transgenic Macrophage Fas-Induced Apoptosis Mice sup />. Tissue Engineering - Part A, 2017, 23, 1078-1087. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 74-95. Keeping fibroblasts in suspense: TAZ-mediated signaling activates a context-dependent profibrotic phenotype. Focus on "TAZ activation drives fibroblast spheroid growth, expression of profibrotic paracrine signals, and context-dependent ECM gene expression†American Journal of Physiology - Cell	1.0 1.5 1.6	8 3 26
11 12 13	Limiting biomaterial fibrosis. Nature Materials, 2019, 18, 781-781. No Effects of Hyperosmolar Culture Medium on Tissue Regeneration by Human Degenerated Nucleus Pulposus Cells Despite Upregulation Extracellular Matrix Genes. Spine, 2018, 43, 307-315. αII-spectrin and βII-spectrin do not affect TGFβ1-induced myofibroblast differentiation. Cell and Tissue Research, 2018, 374, 165-175. Biomaterial Encapsulation Is Enhanced in the Early Stages of the Foreign Body Reaction During Conditional Macrophage Depletion in Transgenic Macrophage Fas-Induced Apoptosis Mice sup />. Tissue Engineering - Part A, 2017, 23, 1078-1087. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 74-95. Keeping fibroblasts in suspense: TAZ-mediated signaling activates a context-dependent profibrotic phenotype. Focus on "TAZ activation drives fibroblast spheroid growth, expression of profibrotic	1.0 1.5 1.6 2.3	8 3 26 122
11 12 13 14	Limiting biomaterial fibrosis. Nature Materials, 2019, 18, 781-781. No Effects of Hyperosmolar Culture Medium on Tissue Regeneration by Human Degenerated Nucleus Pulposus Cells Despite Upregulation Extracellular Matrix Genes. Spine, 2018, 43, 307-315. αll-spectrin and βll-spectrin do not affect TGFβ1-induced myofibroblast differentiation. Cell and Tissue Research, 2018, 374, 165-175. Biomaterial Encapsulation Is Enhanced in the Early Stages of the Foreign Body Reaction During Conditional Macrophage Depletion in Transgenic Macrophage Fas-Induced Apoptosis Mice . Tissue Engineering - Part A, 2017, 23, 1078-1087. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 74-95. Keeping fibroblasts in suspense: TAZ-mediated signaling activates a context-dependent profibrotic phenotype. Focus on "TAZ activation drives fibroblast spheroid growth, expression of profibrotic paracrine signals, and context-dependent ECM gene expressionâ€. American Journal of Physiology - Cell Physiology. 2017, 312, C274-C276. Ascorbic acid promotes a TGF <i>>β < /i> 1-induced myofibroblast phenotype switch. Physiological Reports,</i>	1.0 1.5 1.6 2.3	8 3 26 122 5

#	Article	IF	CITATIONS
19	Ultrastructural aspects of foreign body giant cells generated on different substrates. Journal of Structural Biology, 2016, 195, 31-40.	1.3	8
20	3,4-Dihydroxy-L-Phenylalanine as a Novel Covalent Linker of Extracellular Matrix Proteins to Polyacrylamide Hydrogels with a Tunable Stiffness. Tissue Engineering - Part C: Methods, 2016, 22, 91-101.	1.1	17
21	The pro-fibrotic properties of transforming growth factor on human fibroblasts are counteracted by caffeic acid by inhibiting myofibroblast formation and collagen synthesis. Cell and Tissue Research, 2016, 363, 775-789.	1.5	29
22	Wnt pathway in Dupuytren disease: connecting profibrotic signals. Translational Research, 2015, 166, 762-771.e3.	2.2	13
23	Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Frontiers in Medicine, 2015, 2, 59.	1.2	350
24	Notes on Enidae, 6: On Euchondrus pseudovularis, an endemic species in Israel (Gastropoda,) Tj ETQq0 0 0 rgBT	Oyerlock	10 ₁ Tf 50 542
25	Larger is stealthier. Nature Materials, 2015, 14, 558-559.	13.3	2
26	Microsphere-Based Rapamycin Delivery, Systemic Versus Local Administration in a Rat Model of Renal Ischemia/Reperfusion Injury. Pharmaceutical Research, 2015, 32, 3238-3247.	1.7	12
27	The lÎB kinase inhibitor ACHP strongly attenuates TGF Î21â€induced myofibroblast formation and collagen synthesis. Journal of Cellular and Molecular Medicine, 2015, 19, 2780-2792.	1.6	21
28	Procollagen Lysyl Hydroxylase 2 Expression Is Regulated by an Alternative Downstream Transforming Growth Factor 1²-1 Activation Mechanism. Journal of Biological Chemistry, 2015, 290, 28465-28476.	1.6	48
29	YAP1 Is a Driver of Myofibroblast Differentiation in Normal and Diseased Fibroblasts. American Journal of Pathology, 2015, 185, 3326-3337.	1.9	106
30	Interleukin- $1\hat{l}^2$ Attenuates Myofibroblast Formation and Extracellular Matrix Production in Dermal and Lung Fibroblasts Exposed to Transforming Growth Factor- \hat{l}^21 . PLoS ONE, 2014, 9, e91559.	1.1	89
31	Human Amniotic Fluid-Derived Mesenchymal Cells from Fetuses with a Neural Tube Defect Do Not Deposit Collagen Type I Protein After TGF-Î ² 1 Stimulation In Vitro. Stem Cells and Development, 2014, 23, 555-562.	1.1	17
32	TGF-ß induces Lysyl hydroxylase 2b in human synovial osteoarthritic fibroblasts through ALK5 signaling. Cell and Tissue Research, 2014, 355, 163-171.	1.5	57
33	Macrophage phenotypes in the collagen-induced foreign body reaction in rats. Acta Biomaterialia, 2013, 9, 6502-6510.	4.1	75
34	Epithelial-to-mesenchymal transition in fibrosis: Collagen type I expression is highly upregulated after EMT, but does not contribute to collagen deposition. Experimental Cell Research, 2013, 319, 3000-3009.	1.2	57
35	Genetic and Pharmacological Inhibition of Galectin-3 Prevents Cardiac Remodeling by Interfering With Myocardial Fibrogenesis. Circulation: Heart Failure, 2013, 6, 107-117.	1.6	371
36	Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Human Molecular Genetics, 2013, 22, 1-17.	1.4	135

#	Article	IF	Citations
37	Impaired Collagen Biosynthesis and Crossâ€linking in Aorta of Patients With Bicuspid Aortic Valve. Journal of the American Heart Association, 2013, 2, e000034.	1.6	53
38	MicroRNA-1 and MicroRNA-206 Improve Differentiation Potential of Human Satellite Cells: A Novel Approach for Tissue Engineering of Skeletal Muscle. Tissue Engineering - Part A, 2012, 18, 889-898.	1.6	29
39	New Species in the Old World: Europe as a Frontier in Biodiversity Exploration, a Test Bed for 21st Century Taxonomy. PLoS ONE, 2012, 7, e36881.	1.1	87
40	Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the oneâ€step surgical procedure for cartilage and bone tissue engineering purposes. Journal of Orthopaedic Research, 2011, 29, 853-860.	1.2	56
41	Cervical Softening During Pregnancy: Regulated Changes in Collagen Cross-Linking and Composition of Matricellular Proteins in the Mouse1. Biology of Reproduction, 2011, 84, 1053-1062.	1.2	145
42	Intra-uterine tissue engineering of full-thickness skin defects in a fetal sheep model. Biomaterials, 2010, 31, 3910-3919.	5.7	36
43	Preservation of the chondrocyte's pericellular matrix improves cellâ€induced cartilage formation. Journal of Cellular Biochemistry, 2010, 110, 260-271.	1.2	37
44	The relationship between collagen scaffold cross-linking agents and neutrophils in the foreign body reaction. Biomaterials, 2010, 31, 9192-9201.	5.7	68
45	Endogenous Collagen Influences Differentiation of Human Multipotent Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2010, 16, 1693-1702.	1.6	57
46	Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms in Marfan syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 862-865.	3.3	158
47	Collagen Type II Enhances Chondrogenesis in Adipose Tissue–Derived Stem Cells by Affecting Cell Shape. Tissue Engineering - Part A, 2010, 16, 81-90.	1.6	98
48	The Role of Collagen Crosslinking in Differentiation of Human Mesenchymal Stem Cells and MC3T3-E1 Cells. Tissue Engineering - Part A, 2009, 15, 3857-3867.	1.6	42
49	Collagen crossâ€linking by adiposeâ€derived mesenchymal stromal cells and scarâ€derived mesenchymal cells: Are mesenchymal stromal cells involved in scar formation?. Wound Repair and Regeneration, 2009, 17, 548-558.	1.5	42
50	Deficiency in N-acetylgalactosamine-6-sulfate sulfatase results in collagen perturbations in cartilage of Morquio syndrome A patients. Molecular Genetics and Metabolism, 2009, 97, 196-201.	0.5	35
51	Intermittent Straining Accelerates the Development of Tissue Properties in Engineered Heart Valve Tissue. Tissue Engineering - Part A, 2009, 15, 999-1008.	1.6	56
52	Tailoring Fiber Diameter in Electrospun Poly(É)-Caprolactone) Scaffolds for Optimal Cellular Infiltration in Cardiovascular Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 437-444.	1.6	165
53	Reproducible Long-term Disc Degeneration in a Large Animal Model. Spine, 2008, 33, 949-954.	1.0	69
54	Molecular Changes in the Degenerated Goat Intervertebral Disc. Spine, 2008, 33, 1714-1721.	1.0	33

#	Article	IF	CITATIONS
55	Adjacent Segment Degeneration. Spine, 2008, 33, 1337-1343.	1.0	36
56	Tissue-specific Changes in the Hydroxylysine Content and Cross-links of Collagens and Alterations in Fibril Morphology in Lysyl Hydroxylase 1 Knock-out Mice. Journal of Biological Chemistry, 2007, 282, 6588-6596.	1.6	73
57	The European union's 2010 target: Putting rare species in focus. Biological Conservation, 2007, 139, 167-185.	1.9	78
58	The Role of Collagen Cross-Links in Biomechanical Behavior of Human Aortic Heart Valve Leafletsâ€"Relevance for Tissue Engineering. Tissue Engineering, 2007, 13, 1501-1511.	4.9	158
59	Decreased Collagen Organization and Content Are Associated With Reduced Strength of Demineralized and Intact Bone in the SAMP6 Mouse. Journal of Bone and Mineral Research, 2005, 21, 78-88.	3.1	86
60	Minoxidil exerts different inhibitory effects on gene expression of lysyl hydroxylase 1, 2, and 3: Implications for collagen cross-linking and treatment of fibrosis. Matrix Biology, 2005, 24, 261-270.	1.5	41
61	Elevated formation of pyridinoline cross-links by profibrotic cytokines is associated with enhanced lysyl hydroxylase 2b levels. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1741, 95-102.	1.8	92
62	The type of collagen cross-link determines the reversibility of experimental skin fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 60-67.	1.8	123
63	Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone, 2005, 37, 825-832.	1.4	206
64	Phenotypic and molecular characterization of Bruck syndrome (osteogenesis imperfecta with) Tj ETQq0 0 0 rgB	T /Overloc	k 10 Tf 50 382 146
65	Increased formation of pyridinoline cross-links due to higher telopeptide lysyl hydroxylase levels is a general fibrotic phenomenon. Matrix Biology, 2004, 23, 251-257.	1.5	181
66	Pediatric Generalized Joint Hypomobility and Musculoskeletal Complaints: A New Entity? Clinical, Biochemical, and Osseal Characteristics. Pediatrics, 2004, 113, 714-719.	1.0	38
67	Pediatric Generalized Joint Hypermobility With and Without Musculoskeletal Complaints: A Localized or Systemic Disorder?. Pediatrics, 2003, 111, e248-e254.	1.0	86
68	Identification of PLOD2 as Telopeptide Lysyl Hydroxylase, an Important Enzyme in Fibrosis. Journal of Biological Chemistry, 2003, 278, 40967-40972.	1.6	333
69	AGEing and osteoarthritis: a different perspective. Current Opinion in Rheumatology, 2003, 15, 616-622.	2.0	123
70	Molecular markers for osteoarthritis: the road ahead. Current Opinion in Rheumatology, 2002, 14, 585-589.	2.0	36
71	Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: A possible mechanism through which age is a risk factor for osteoarthritis. Arthritis and Rheumatism, 2002, 46, 114-123.	6.7	398
72	The role of collagen in determining bone mechanical properties. Journal of Orthopaedic Research, 2001, 19, 1021-1026.	1.2	299

#	ARTICLE	IF	CITATION
73	Age-related decrease in susceptibility of human articular cartilage to matrix metalloproteinase-mediated degradation: The role of advanced glycation end products. Arthritis and Rheumatism, 2001, 44, 2562-2571.	6.7	118
74	Pyridinium Cross-Links in Bone of Patients with Osteogenesis Imperfecta: Evidence of a Normal Intrafibrillar Collagen Packing. Journal of Bone and Mineral Research, 2000, 15, 1330-1336.	3.1	41
75	Effect of Collagen Turnover on the Accumulation of Advanced Glycation End Products. Journal of Biological Chemistry, 2000, 275, 39027-39031.	1.6	767
76	Compositional and metabolic changes in damaged cartilage are peak-stress, stress-rate, and loading-duration dependent. Journal of Orthopaedic Research, 1999, 17, 870-879.	1.2	143
77	Mechanical Properties of the Collagen Network in Human Articular Cartilage as Measured by Osmotic Stress Technique. Archives of Biochemistry and Biophysics, 1998, 351, 207-219.	1.4	241
78	Amino Acid Analysis by Reverse-Phase High-Performance Liquid Chromatography: Improved Derivatization and Detection Conditions with 9-Fluorenylmethyl Chloroformate. Analytical Biochemistry, 1996, 240, 167-176.	1.1	214
79	Electrophoretic characterization of posttranslational modifications of human parotid salivary $\hat{l}\pm$ -amylase. Electrophoresis, 1991, 12, 74-79.	1.3	37
80	Adapting mark-recapture methods to estimating accepted species-level diversity: a case study with terrestrial Gastropoda. Peerl, 0, 10, e13139.	0.9	2