Ralf Bartenschlager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/287901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Replication of Subgenomic Hepatitis C Virus RNAs in a Hepatoma Cell Line. Science, 1999, 285, 110-113.	6.0	2,615
2	Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Medicine, 2005, 11, 791-796.	15.2	2,561
3	Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 2005, 437, 1167-1172.	13.7	2,136
4	The lipid droplet is an important organelle for hepatitis C virus production. Nature Cell Biology, 2007, 9, 1089-1097.	4.6	1,083
5	Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 2020, 588, 498-502.	13.7	918
6	Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites. Cell Host and Microbe, 2009, 5, 365-375.	5.1	884
7	Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7408-7413.	3.3	651
8	Identification of the Hepatitis C Virus RNA Replication Complex in Huh-7 Cells Harboring Subgenomic Replicons. Journal of Virology, 2003, 77, 5487-5492.	1.5	558
9	Replication of hepatitis C virus. Microbiology (United Kingdom), 2000, 81, 1631-1648.	0.7	537
10	SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nature Communications, 2020, 11, 5885.	5.8	514
11	Host-directed therapies for bacterial and viral infections. Nature Reviews Drug Discovery, 2018, 17, 35-56.	21.5	512
12	Enhancement of Hepatitis C Virus RNA Replication by Cell Culture-Adaptive Mutations. Journal of Virology, 2001, 75, 4614-4624.	1.5	482
13	Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. Journal of Virology, 1997, 71, 8416-8428.	1.5	481
14	Recruitment and Activation of a Lipid Kinase by Hepatitis C Virus NS5A Is Essential for Integrity of the Membranous Replication Compartment. Cell Host and Microbe, 2011, 9, 32-45.	5.1	435
15	Three-Dimensional Architecture and Biogenesis of Membrane Structures Associated with Hepatitis C Virus Replication. PLoS Pathogens, 2012, 8, e1003056.	2.1	429
16	Mutations in Hepatitis C Virus RNAs Conferring Cell Culture Adaptation. Journal of Virology, 2001, 75, 1437-1449.	1.5	421
17	Essential Role of Domain III of Nonstructural Protein 5A for Hepatitis C Virus Infectious Particle Assembly. PLoS Pathogens, 2008, 4, e1000035.	2.1	405
18	Assembly of infectious hepatitis C virus particles. Trends in Microbiology, 2011, 19, 95-103.	3.5	389

#	Article	IF	CITATIONS
19	The Non-structural Protein 4A of Dengue Virus Is an Integral Membrane Protein Inducing Membrane Alterations in a 2K-regulated Manner. Journal of Biological Chemistry, 2007, 282, 8873-8882.	1.6	374
20	Characterization of the Early Steps of Hepatitis C Virus Infection by Using Luciferase Reporter Viruses. Journal of Virology, 2006, 80, 5308-5320.	1.5	363
21	Viral and Cellular Determinants of Hepatitis C Virus RNA Replication in Cell Culture. Journal of Virology, 2003, 77, 3007-3019.	1.5	356
22	Characterization of Cell Lines Carrying Self-Replicating Hepatitis C Virus RNAs. Journal of Virology, 2001, 75, 1252-1264.	1.5	336
23	The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nature Reviews Microbiology, 2013, 11, 482-496.	13.6	336
24	Persistent and Transient Replication of Full-Length Hepatitis C Virus Genomes in Cell Culture. Journal of Virology, 2002, 76, 4008-4021.	1.5	330
25	Kissing-Loop Interaction in the 3′ End of the Hepatitis C Virus Genome Essential for RNA Replication. Journal of Virology, 2005, 79, 380-392.	1.5	320
26	Biochemical and Morphological Properties of Hepatitis C Virus Particles and Determination of Their Lipidome. Journal of Biological Chemistry, 2011, 286, 3018-3032.	1.6	308
27	Critical Role of Type III Interferon in Controlling SARS-CoV-2 Infection in Human Intestinal Epithelial Cells. Cell Reports, 2020, 32, 107863.	2.9	295
28	Strategies to Inhibit Entry of HBV and HDV Into Hepatocytes. Gastroenterology, 2014, 147, 48-64.	0.6	293
29	Hepatitis C Virus p7 Protein Is Crucial for Assembly and Release of Infectious Virions. PLoS Pathogens, 2007, 3, e103.	2.1	290
30	Sequences in the 5′ Nontranslated Region of Hepatitis C Virus Required for RNA Replication. Journal of Virology, 2001, 75, 12047-12057.	1.5	289
31	Interferon-Î ³ inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology, 2002, 35, 694-703.	3.6	286
32	Rewiring cellular networks by members of the Flaviviridae family. Nature Reviews Microbiology, 2018, 16, 125-142.	13.6	283
33	Ultrastructural Characterization of Zika Virus Replication Factories. Cell Reports, 2017, 18, 2113-2123.	2.9	274
34	The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replicationin vitro. Hepatology, 2006, 43, 761-770.	3.6	272
35	Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene, 2005, 24, 4921-4933.	2.6	254
36	Hepatitis B virus with antigenically altered hepatitis B surface antigen is selected by high-dose hepatitis B immune globulin after liver transplantation. Hepatology, 1998, 27, 254-263.	3.6	250

#	Article	IF	CITATIONS
37	Structure and Function of the Membrane Anchor Domain of Hepatitis C Virus Nonstructural Protein 5A. Journal of Biological Chemistry, 2004, 279, 40835-40843.	1.6	249
38	Viral immune modulators perturb the human molecular network by common and unique strategies. Nature, 2012, 487, 486-490.	13.7	249
39	Quantitative Analysis of the Hepatitis C Virus Replication Complex. Journal of Virology, 2005, 79, 13594-13605.	1.5	247
40	Genetic Analysis of Sequences in the 3′ Nontranslated Region of Hepatitis C Virus That Are Important for RNA Replication. Journal of Virology, 2002, 76, 5326-5338.	1.5	246
41	Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14416-14421.	3.3	244
42	Novel Insights into Hepatitis C Virus Replication and Persistence. Advances in Virus Research, 2004, 63, 71-180.	0.9	243
43	Essential Role of Cyclophilin A for Hepatitis C Virus Replication and Virus Production and Possible Link to Polyprotein Cleavage Kinetics. PLoS Pathogens, 2009, 5, e1000546.	2.1	233
44	Membranous Replication Factories Induced by Plus-Strand RNA Viruses. Viruses, 2014, 6, 2826-2857.	1.5	228
45	Hepatitis C Virus Proteins: From Structure to Function. Current Topics in Microbiology and Immunology, 2013, 369, 113-142.	0.7	227
46	Architecture and biogenesis of plus-strand RNA virus replication factories. World Journal of Virology, 2013, 2, 32.	1.3	227
47	Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology, 2007, 46, 1722-1731.	3.6	222
48	Subcellular Localization and Membrane Topology of the Dengue Virus Type 2 Non-structural Protein 4B. Journal of Biological Chemistry, 2006, 281, 8854-8863.	1.6	221
49	Morphological and Biochemical Characterization of the Membranous Hepatitis C Virus Replication Compartment. Journal of Virology, 2013, 87, 10612-10627.	1.5	220
50	Hepatitis C Virus RNA Replication and Assembly: Living on the Fat of the Land. Cell Host and Microbe, 2014, 16, 569-579.	5.1	220
51	The Lipid Droplet Binding Domain of Hepatitis C Virus Core Protein Is a Major Determinant for Efficient Virus Assembly. Journal of Biological Chemistry, 2007, 282, 37158-37169.	1.6	218
52	Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies. Cell Host and Microbe, 2020, 28, 853-866.e5.	5.1	213
53	Complex formation between the NS3 serine-type proteinase of the hepatitis C virus and NS4A and its importance for polyprotein maturation. Journal of Virology, 1995, 69, 7519-7528.	1.5	211
54	Interferon-α inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent pathway. Journal of General Virology, 2001, 82, 723-733.	1.3	210

#	Article	IF	CITATIONS
55	Mutational Analysis of Hepatitis C Virus Nonstructural Protein 5A: Potential Role of Differential Phosphorylation in RNA Replication and Identification of a Genetically Flexible Domain. Journal of Virology, 2005, 79, 3187-3194.	1.5	208
56	Dengue Virus Perturbs Mitochondrial Morphodynamics to Dampen Innate Immune Responses. Cell Host and Microbe, 2016, 20, 342-356.	5.1	207
57	The Level of CD81 Cell Surface Expression Is a Key Determinant for Productive Entry of Hepatitis C Virus into Host Cells. Journal of Virology, 2007, 81, 588-598.	1.5	201
58	Analysis of Hepatitis C Virus Superinfection Exclusion by Using Novel Fluorochrome Gene-Tagged Viral Genomes. Journal of Virology, 2007, 81, 4591-4603.	1.5	198
59	Evidence for Novel Hepaciviruses in Rodents. PLoS Pathogens, 2013, 9, e1003438.	2.1	187
60	High Density Lipoprotein Inhibits Hepatitis C Virus-neutralizing Antibodies by Stimulating Cell Entry via Activation of the Scavenger Receptor BI. Journal of Biological Chemistry, 2006, 281, 18285-18295.	1.6	186
61	miRNA-130a Targets <i>ATG2B</i> and <i>DICER1</i> to Inhibit Autophagy and Trigger Killing of Chronic Lymphocytic Leukemia Cells. Cancer Research, 2012, 72, 1763-1772.	0.4	185
62	Novel cell culture systems for the hepatitis C virus. Antiviral Research, 2001, 52, 1-17.	1.9	170
63	Deregulation of miRâ€92a expression is implicated in hepatocellular carcinoma development. Pathology International, 2010, 60, 351-357.	0.6	168
64	Dynamic Oscillation of Translation and Stress Granule Formation Mark the Cellular Response to Virus Infection. Cell Host and Microbe, 2012, 12, 71-85.	5.1	166
65	From Structure to Function: New Insights into Hepatitis C Virus RNA Replication. Journal of Biological Chemistry, 2006, 281, 9833-9836.	1.6	165
66	Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins. PLoS Pathogens, 2015, 11, e1005277.	2.1	165
67	Structural and Functional Studies of Nonstructural Protein 2 of the Hepatitis C Virus Reveal Its Key Role as Organizer of Virion Assembly. PLoS Pathogens, 2010, 6, e1001233.	2.1	162
68	A replicon-based bioassay for the measurement of interferons in patients with chronic hepatitis C. Journal of Virological Methods, 2003, 110, 201-209.	1.0	161
69	Alternative Approaches for Efficient Inhibition of Hepatitis C Virus RNA Replication by Small Interfering RNAs. Journal of Virology, 2004, 78, 3436-3446.	1.5	158
70	Divergent Roles of Autophagy in Virus Infection. Cells, 2013, 2, 83-104.	1.8	158
71	An orthogonal proteomic survey uncovers novel Zika virus host factors. Nature, 2018, 561, 253-257.	13.7	156
72	Flaviviridae Replication Organelles: Oh, What a Tangled Web We Weave. Annual Review of Virology, 2015, 2, 289-310.	3.0	154

5

#	Article	lF	CITATIONS
73	DEB025 (Alisporivir) Inhibits Hepatitis C Virus Replication by Preventing a Cyclophilin A Induced Cis-Trans Isomerisation in Domain II of NS5A. PLoS ONE, 2010, 5, e13687.	1.1	151
74	Characterization of the hepatitis C virus E2 epitope defined by the broadly neutralizing monoclonal antibody AP33. Hepatology, 2006, 43, 592-601.	3.6	150
75	Hepatitis C Virus NS5A Protein Is a Substrate for the Peptidyl-prolyl cis/trans Isomerase Activity of Cyclophilins A and B. Journal of Biological Chemistry, 2009, 284, 13589-13601.	1.6	149
76	The Origin of Hepatitis C Virus. Current Topics in Microbiology and Immunology, 2013, 369, 1-15.	0.7	149
77	Cell Culture Adaptation of Hepatitis C Virus and In Vivo Viability of an Adapted Variant. Journal of Virology, 2007, 81, 13168-13179.	1.5	147
78	Biochemical and Kinetic Analyses of NS5B RNA-Dependent RNA Polymerase of the Hepatitis C Virus. Virology, 1998, 249, 108-118.	1.1	144
79	Targeting of Hepatitis C Virus Core Protein to Mitochondria through a Novel C-Terminal Localization Motif. Journal of Virology, 2004, 78, 7958-7968.	1.5	144
80	Hepatitis C virus replicons: potential role for drug development. Nature Reviews Drug Discovery, 2002, 1, 911-916.	21.5	143
81	Hepatitis c virus and host cell lipids: An intimate connection. RNA Biology, 2011, 8, 258-269.	1.5	140
82	Hepatitis C Virus-Replicating Hepatocytes Induce Fibrogenic Activation of Hepatic Stellate Cells. Gastroenterology, 2005, 129, 246-258.	0.6	139
83	Production of Infectious Hepatitis C Virus in Primary Cultures of Human Adult Hepatocytes. Gastroenterology, 2010, 139, 1355-1364.e6.	0.6	139
84	Hepatitis B and C virus coinfection: A novel model system reveals the absence of direct viral interference. Hepatology, 2009, 50, 46-55.	3.6	138
85	Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology, 2012, 56, 2082-2093.	3.6	138
86	Structural and Functional Characterization of Nonstructural Protein 2 for Its Role in Hepatitis C Virus Assembly. Journal of Biological Chemistry, 2008, 283, 28546-28562.	1.6	135
87	Daclatasvir-Like Inhibitors of NS5A Block Early Biogenesis of Hepatitis C Virus–Induced Membranous Replication Factories, Independent of RNA Replication. Gastroenterology, 2014, 147, 1094-1105.e25.	0.6	135
88	Modulation of Hepatitis C Virus NS5A Hyperphosphorylation by Nonstructural Proteins NS3, NS4A, and NS4B. Journal of Virology, 1999, 73, 7138-7146.	1.5	135
89	Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly. Viruses, 2016, 8, 160.	1.5	134
90	Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses. Cell Host and Microbe, 2017, 22, 387-399.e6.	5.1	134

#	Article	IF	CITATIONS
91	SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. Communications Biology, 2022, 5, 45.	2.0	133
92	Efficient <i>trans</i> -Encapsidation of Hepatitis C Virus RNAs into Infectious Virus-Like Particles. Journal of Virology, 2008, 82, 7034-7046.	1.5	131
93	A Concerted Action of Hepatitis C Virus P7 and Nonstructural Protein 2 Regulates Core Localization at the Endoplasmic Reticulum and Virus Assembly. PLoS Pathogens, 2011, 7, e1002144.	2.1	130
94	Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody. Nature Biotechnology, 2015, 33, 549-554.	9.4	129
95	euHCVdb: the European hepatitis C virus database. Nucleic Acids Research, 2007, 35, D363-D366.	6.5	128
96	A Novel Inhibitor of Dengue Virus Replication That Targets the Capsid Protein. Antimicrobial Agents and Chemotherapy, 2013, 57, 15-25.	1.4	128
97	HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon. Gastroenterology, 2018, 154, 1791-1804.e22.	0.6	128
98	The NS3/4A proteinase of the hepatitis C virus: unravelling structure and function of an unusual enzyme and a prime target for antiviral therapy. Journal of Viral Hepatitis, 1999, 6, 165-181.	1.0	127
99	Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus. Hepatology, 2007, 46, 330-338.	3.6	127
100	The Hepatitis C Virus RNA 3′-Untranslated Region Strongly Enhances Translation Directed by the Internal Ribosome Entry Site. Journal of Virology, 2006, 80, 11579-11588.	1.5	126
101	Activation of Type I and III Interferon Response by Mitochondrial and Peroxisomal MAVS and Inhibition by Hepatitis C Virus. PLoS Pathogens, 2015, 11, e1005264.	2.1	125
102	Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: Considerations for scientists and funding agencies. Virus Research, 2018, 248, 53-62.	1.1	124
103	Prevalence of SARS-CoV-2 Infection in Children and Their Parents in Southwest Germany. JAMA Pediatrics, 2021, 175, 586.	3.3	124
104	Three-Dimensional Architecture of Tick-Borne Encephalitis Virus Replication Sites and Trafficking of the Replicated RNA. Journal of Virology, 2013, 87, 6469-6481.	1.5	123
105	Membrane Association of the RNA-Dependent RNA Polymerase Is Essential for Hepatitis C Virus RNA Replication. Journal of Virology, 2004, 78, 13278-13284.	1.5	121
106	Secretion of Hepatitis C Virus Envelope Glycoproteins Depends on Assembly of Apolipoprotein B Positive Lipoproteins. PLoS ONE, 2009, 4, e4233.	1.1	118
107	Synthesis and biological evaluation of α-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorganic and Medicinal Chemistry, 2011, 19, 4067-4074.	1.4	117
108	Production of Infectious Genotype 1b Virus Particles in Cell Culture and Impairment by Replication Enhancing Mutations. PLoS Pathogens, 2009, 5, e1000475.	2.1	116

#	Article	IF	CITATIONS
109	Hepatitis C Virus RNA Replication. Current Topics in Microbiology and Immunology, 2013, 369, 167-198.	0.7	116
110	Role of Annexin A2 in the Production of Infectious Hepatitis C Virus Particles. Journal of Virology, 2010, 84, 5775-5789.	1.5	114
111	The heme oxygenase 1 product biliverdin interferes with hepatitis C virus replication by increasing antiviral interferon response. Hepatology, 2010, 51, 398-404.	3.6	113
112	Molecular Mechanism of Signal Perception and Integration by the Innate Immune Sensor Retinoic Acid-inducible Gene-I (RIG-I). Journal of Biological Chemistry, 2011, 286, 27278-27287.	1.6	112
113	A Plant-Derived Flavonoid Inhibits Entry of All HCV Genotypes Into Human Hepatocytes. Gastroenterology, 2012, 143, 213-222.e5.	0.6	111
114	MAP-Kinase Regulated Cytosolic Phospholipase A2 Activity Is Essential for Production of Infectious Hepatitis C Virus Particles. PLoS Pathogens, 2012, 8, e1002829.	2.1	110
115	Thiazolidinone–Peptide Hybrids as Dengue Virus Protease Inhibitors with Antiviral Activity in Cell Culture. Journal of Medicinal Chemistry, 2013, 56, 8389-8403.	2.9	110
116	The Lipid Kinase Phosphatidylinositol-4 Kinase III Alpha Regulates the Phosphorylation Status of Hepatitis C Virus NS5A. PLoS Pathogens, 2013, 9, e1003359.	2.1	110
117	Dengue Virus- and Hepatitis C Virus-Induced Replication and Assembly Compartments: the Enemy Inside—Caught in the Web. Journal of Virology, 2014, 88, 5907-5911.	1.5	109
118	Cyclosporine A inhibits hepatitis C virus nonstructural protein 2 through cyclophilin A. Hepatology, 2009, 50, 1638-1645.	3.6	108
119	Analysis of CD8+ T-Cell–Mediated Inhibition of Hepatitis C Virus Replication Using a Novel Immunological Model. Gastroenterology, 2009, 136, 1391-1401.	0.6	108
120	Novel Dengue Virus NS2B/NS3 Protease Inhibitors. Antimicrobial Agents and Chemotherapy, 2015, 59, 1100-1109.	1.4	108
121	Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Molecular Cell, 2021, 81, 2851-2867.e7.	4.5	108
122	NS4B Self-Interaction through Conserved C-Terminal Elements Is Required for the Establishment of Functional Hepatitis C Virus Replication Complexes. Journal of Virology, 2011, 85, 6963-6976.	1.5	107
123	Peptide–Boronic Acid Inhibitors of Flaviviral Proteases: Medicinal Chemistry and Structural Biology. Journal of Medicinal Chemistry, 2017, 60, 511-516.	2.9	105
124	Characterization of Hepatitis C Virus Particle Subpopulations Reveals Multiple Usage of the Scavenger Receptor BI for Entry Steps. Journal of Biological Chemistry, 2012, 287, 31242-31257.	1.6	104
125	Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiology Reviews, 2012, 36, 663-683.	3.9	103
126	Apolipoprotein E Likely Contributes to a Maturation Step of Infectious Hepatitis C Virus Particles and Interacts with Viral Envelope Glycoproteins. Journal of Virology, 2014, 88, 12422-12437.	1.5	103

#	Article	IF	CITATIONS
127	Hepatitis C virus replication cycle. Journal of Hepatology, 2010, 53, 583-585.	1.8	101
128	Geno2pheno[HCV] – A Web-based Interpretation System to Support Hepatitis C Treatment Decisions in the Era of Direct-Acting Antiviral Agents. PLoS ONE, 2016, 11, e0155869.	1.1	101
129	Hepatitis D virus replication is sensed by MDA5 and induces IFN-β/λ responses in hepatocytes. Journal of Hepatology, 2018, 69, 25-35.	1.8	101
130	Hepatitis C virus escape from the interferon regulatory factor 3 pathway by a passive and active evasion strategy. Hepatology, 2007, 46, 1365-1374.	3.6	100
131	Mouse Hepatic Cells Support Assembly of Infectious Hepatitis C Virus Particles. Gastroenterology, 2011, 141, 1057-1066.	0.6	100
132	Dengue Virus Inhibition of Autophagic Flux and Dependency of Viral Replication on Proteasomal Degradation of the Autophagy Receptor p62. Journal of Virology, 2015, 89, 8026-8041.	1.5	100
133	Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27–restricted human immune response. Journal of Clinical Investigation, 2009, 119, 376-86.	3.9	99
134	Domain 3 of NS5A Protein from the Hepatitis C Virus Has Intrinsic α-Helical Propensity and Is a Substrate of Cyclophilin A. Journal of Biological Chemistry, 2011, 286, 20441-20454.	1.6	98
135	Memory-like HCV-specific CD8+ T cells retain a molecular scar after cure of chronic HCV infection. Nature Immunology, 2021, 22, 229-239.	7.0	95
136	Hepatitis C virus molecular clones and their replication capacity in vivo and in cell culture. Virus Research, 2007, 127, 195-207.	1.1	93
137	Identification of Determinants Involved in Initiation of Hepatitis C Virus RNA Synthesis by Using Intergenotypic Replicase Chimeras. Journal of Virology, 2007, 81, 5270-5283.	1.5	92
138	Efficient hepatitis C virus cell culture system: What a difference the host cell makes. Proceedings of the United States of America, 2005, 102, 9739-9740.	3.3	91
139	Role of the Hepatitis C Virus Core+1 Open Reading Frame and Core <i>cis</i> -Acting RNA Elements in Viral RNA Translation and Replication. Journal of Virology, 2008, 82, 11503-11515.	1.5	91
140	Virion Assembly and Release. Current Topics in Microbiology and Immunology, 2013, 369, 199-218.	0.7	91
141	The Interactomes of Influenza Virus NS1 and NS2 Proteins Identify New Host Factors and Provide Insights for ADAR1 Playing a Supportive Role in Virus Replication. PLoS Pathogens, 2013, 9, e1003440.	2.1	91
142	A pan-serotype dengue virusÂinhibitor targeting the NS3–NS4BÂinteraction. Nature, 2021, 598, 504-509.	13.7	90
143	A Major Determinant of Cyclophilin Dependence and Cyclosporine Susceptibility of Hepatitis C Virus Identified by a Genetic Approach. PLoS Pathogens, 2010, 6, e1001118.	2.1	89
144	Relation between viral fitness and immune escape within the hepatitis C virus protease. Gut, 2006, 55, 266-274.	6.1	88

#	Article	IF	CITATIONS
145	Hepatitis C Virus RNA Translation. Current Topics in Microbiology and Immunology, 2013, 369, 143-166.	0.7	88
146	Efficient Rescue of Hepatitis C Virus RNA Replication by trans-Complementation with Nonstructural Protein 5A. Journal of Virology, 2005, 79, 896-909.	1.5	86
147	Characterization of the Mode of Action of a Potent Dengue Virus Capsid Inhibitor. Journal of Virology, 2014, 88, 11540-11555.	1.5	86
148	Discovery of Nanomolar Dengue and West Nile Virus Protease Inhibitors Containing a 4-Benzyloxyphenylglycine Residue. Journal of Medicinal Chemistry, 2015, 58, 9354-9370.	2.9	86
149	Spatiotemporal Coupling of the Hepatitis C Virus Replication Cycle by Creating a Lipid Droplet- Proximal Membranous Replication Compartment. Cell Reports, 2019, 27, 3602-3617.e5.	2.9	86
150	Exploitation of cellular pathways by Dengue virus. Current Opinion in Microbiology, 2011, 14, 470-475.	2.3	85
151	Interferon-stimulated genes and their role in controlling hepatitis C virus. Journal of Hepatology, 2013, 59, 1331-1341.	1.8	85
152	Selective Stimulation of Hepatitis C Virus and Pestivirus NS5B RNA Polymerase Activity by GTP. Journal of Biological Chemistry, 1999, 274, 10807-10815.	1.6	84
153	Reconstitution of the Entire Hepatitis C Virus Life Cycle in Nonhepatic Cells. Journal of Virology, 2012, 86, 11919-11925.	1.5	83
154	Interferon type I gene expression in chronic hepatitis C. Laboratory Investigation, 2004, 84, 1148-1159.	1.7	82
155	The Hepatitis C Virus RNA-Dependent RNA Polymerase Membrane Insertion Sequence Is a Transmembrane Segment. Journal of Virology, 2002, 76, 13088-13093.	1.5	81
156	Dissecting the Interferon-Induced Inhibition of Hepatitis C Virus Replication by Using a Novel Host Cell Line. Journal of Virology, 2005, 79, 13778-13793.	1.5	81
157	Flavivirus Infection Uncouples Translation Suppression from Cellular Stress Responses. MBio, 2017, 8,	1.8	81
158	Interleukinâ€32: A new proinflammatory cytokine involved in hepatitis C virusâ€related liver inflammation and fibrosis. Hepatology, 2011, 53, 1819-1829.	3.6	79
159	Nuclear Localization of Dengue Virus Nonstructural Protein 5 Does Not Strictly Correlate with Efficient Viral RNA Replication and Inhibition of Type I Interferon Signaling. Journal of Virology, 2013, 87, 4545-4557.	1.5	79
160	Treatment of Chronic Hepatitis C: Current and Future. Current Topics in Microbiology and Immunology, 2013, 369, 321-342.	0.7	79
161	Revisiting Dengue Virus–Host Cell Interaction. Advances in Virus Research, 2014, 88, 1-109.	0.9	79
162	The face of future hepatitis C antiviral drug development: Recent biological and virologic advances and their translation to drug development and clinical practice. Journal of Hepatology, 2006, 44, 411-421.	1.8	78

#	Article	IF	CITATIONS
163	Interferonâ€inducible cholesterolâ€25â€hydroxylase restricts hepatitis C virus replication through blockage of membranous web formation. Hepatology, 2015, 62, 702-714.	3.6	78
164	Replication Vesicles are Load- and Choke-Points in the Hepatitis C Virus Lifecycle. PLoS Pathogens, 2013, 9, e1003561.	2.1	77
165	On the History of Hepatitis C Virus Cell Culture Systems. Journal of Medicinal Chemistry, 2014, 57, 1627-1642.	2.9	77
166	Chronic viral hepatitis and its association with liver cancer. Biological Chemistry, 2017, 398, 817-837.	1.2	77
167	Perilipin discerns chronic from acute hepatocellular steatosis. Journal of Hepatology, 2014, 60, 633-642.	1.8	76
168	Antiviral drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-CoV-2 replication. Cell Reports, 2021, 35, 108940.	2.9	76
169	Molecular aspects of Dengue virus replication. Future Microbiology, 2008, 3, 155-165.	1.0	75
170	NS5A Domain 1 and Polyprotein Cleavage Kinetics Are Critical for Induction of Double-Membrane Vesicles Associated with Hepatitis C Virus Replication. MBio, 2015, 6, e00759.	1.8	75
171	Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis. Journal of Virology, 2018, 92, .	1.5	75
172	Challenges for Targeting SARS-CoV-2 Proteases as a Therapeutic Strategy for COVID-19. ACS Infectious Diseases, 2021, 7, 1457-1468.	1.8	75
173	Replication of the hepatitis C virus in cell culture. Antiviral Research, 2003, 60, 91-102.	1.9	74
174	Hepatitis C virus RNA replication is resistant to tumour necrosis factor-α. Journal of General Virology, 2003, 84, 1253-1259.	1.3	74
175	The duck hepatitis B virus P-gene codes for protein strongly associated with the 5′-end of the viral dna minus strand. Virology, 1988, 166, 475-485.	1.1	73
176	Cell Culture Systems for Hepatitis C Virus. Current Topics in Microbiology and Immunology, 2013, 369, 17-48.	0.7	72
177	Comparative Analysis of the Lambda-Interferons IL-28A and IL-29 regarding Their Transcriptome and Their Antiviral Properties against Hepatitis C Virus. PLoS ONE, 2010, 5, e15200.	1.1	72
178	In VitroStudies on the Activation of the Hepatitis C Virus NS3 Proteinase by the NS4A Cofactor. Virology, 1996, 221, 54-66.	1.1	71
179	Sustained delivery of siRNAs targeting viral infection by cell-degradable multilayered polyelectrolyte films. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16320-16325.	3.3	71
180	Animal Models for Hepatitis C. Current Topics in Microbiology and Immunology, 2013, 369, 49-86.	0.7	71

#	Article	IF	CITATIONS
181	Correlative light and electron microscopy methods for the study of virus–cell interactions. FEBS Letters, 2016, 590, 1877-1895.	1.3	71
182	Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus–Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology, 2019, 157, 537-551.e9.	0.6	71
183	New Insights into Structure and Replication of the Hepatitis C Virus and Clinical Implications. Seminars in Liver Disease, 2010, 30, 333-347.	1.8	70
184	A novel interaction between dengue virus nonstructural protein 1 and the NS4A-2K-4B precursor is required for viral RNA replication but not for formation of the membranous replication organelle. PLoS Pathogens, 2019, 15, e1007736.	2.1	70
185	E2 of Hepatitis C Virus Inhibits Apoptosis. Journal of Immunology, 2005, 175, 8226-8235.	0.4	69
186	Phenylalanine and Phenylglycine Analogues as Arginine Mimetics in Dengue Protease Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 7719-7733.	2.9	69
187	Biochemical and structural analysis of the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Journal of Viral Hepatitis, 2000, 7, 167-174.	1.0	68
188	Inhibition of HCV Replication by Cyclophilin Antagonists Is Linked to Replication Fitness and Occurs by Inhibition of Membranous Web Formation. Gastroenterology, 2014, 146, 1361-1372.e9.	0.6	67
189	Detection of hepatitis C virus in paraffin-embedded liver biopsies of patients negative for viral RNA in serum. Hepatology, 1999, 29, 223-229.	3.6	66
190	Hepatitis C virus molecular clones: from cDNA to infectious virus particles in cell culture. Current Opinion in Microbiology, 2006, 9, 416-422.	2.3	66
191	Mutations That Alter Use of Hepatitis C Virus Cell Entry Factors Mediate Escape From Neutralizing Antibodies. Gastroenterology, 2012, 143, 223-233.e9.	0.6	66
192	Neutralizing Host Responses in Hepatitis C Virus Infection Target Viral Entry at Postbinding Steps and Membrane Fusion. Gastroenterology, 2008, 135, 1719-1728.e1.	0.6	65
193	Characterization of Determinants Important for Hepatitis C Virus p7 Function in Morphogenesis by Using trans -Complementation. Journal of Virology, 2009, 83, 11682-11693.	1.5	65
194	High-Throughput Screening Using Dengue Virus Reporter Genomes. Methods in Molecular Biology, 2013, 1030, 205-219.	0.4	64
195	Apolipoprotein E Mediates Evasion From Hepatitis C Virus Neutralizing Antibodies. Gastroenterology, 2016, 150, 206-217.e4.	0.6	64
196	Membrane alterations induced by nonstructural proteins of human norovirus. PLoS Pathogens, 2017, 13, e1006705.	2.1	64
197	Evidence that hepatitis B virus replication in mouse cells is limited by the lack of a host cell dependency factor. Journal of Hepatology, 2016, 64, 556-564.	1.8	63
198	Secretion of Hepatitis C Virus Replication Intermediates Reduces Activation of Toll-Like Receptor 3 in Hepatocytes. Gastroenterology, 2018, 154, 2237-2251.e16.	0.6	63

#	Article	IF	CITATIONS
199	Enhancement of genotype 1 hepatitis C virus replication by bile acids through FXR. Journal of Hepatology, 2008, 48, 192-199.	1.8	62
200	Nonstructural 3/4A protease of hepatitis C virus activates epithelial growth factor-induced signal transduction by cleavage of the T-cell protein tyrosine phosphatase. Hepatology, 2009, 49, 1810-1820.	3.6	62
201	The hepatitis C virus replicon system: From basic research to clinical application. Journal of Hepatology, 2005, 43, 210-216.	1.8	61
202	Contribution of autophagy machinery factors to HCV and SARS-CoV-2 replication organelle formation. Cell Reports, 2021, 37, 110049.	2.9	60
203	Oral immunization with HCV-NS3—transformed Salmonella: Induction of HCV-specific CTL in a transgenic mouse model. Gastroenterology, 2001, 121, 1158-1166.	0.6	59
204	Role of RNA Structures in Genome Terminal Sequences of the Hepatitis C Virus for Replication and Assembly. Journal of Virology, 2009, 83, 11989-11995.	1.5	59
205	ER-shaping atlastin proteins act as central hubs to promote flavivirus replication and virion assembly. Nature Microbiology, 2019, 4, 2416-2429.	5.9	59
206	Candidate Targets for Hepatitis C Virus-Specific Antiviral Therapy. Intervirology, 1997, 40, 378-393.	1.2	58
207	Liver Injury and Disease Pathogenesis in Chronic Hepatitis C. Current Topics in Microbiology and Immunology, 2013, 369, 263-288.	0.7	58
208	Expression of the P-protein of the human hepatitis B virus in a vaccinia virus system and detection of the nucleocapsid-associated P-gene product by radiolabelling at newly introduced phosphorylation sites. Nucleic Acids Research, 1992, 20, 195-202.	6.5	57
209	Ribavirin Antagonizes the In Vitro Anti-Hepatitis C Virus Activity of 2′- C -Methylcytidine, the Active Component of Valopicitabine. Antimicrobial Agents and Chemotherapy, 2006, 50, 3444-3446.	1.4	56
210	Identification of HNRNPK as Regulator of Hepatitis C Virus Particle Production. PLoS Pathogens, 2015, 11, e1004573.	2.1	56
211	A Combined Genetic-Proteomic Approach Identifies Residues within Dengue Virus NS4B Critical for Interaction with NS3 and Viral Replication. Journal of Virology, 2015, 89, 7170-7186.	1.5	56
212	A Comprehensive Structure-Function Comparison of Hepatitis C Virus Strain JFH1 and J6 Polymerases Reveals a Key Residue Stimulating Replication in Cell Culture across Genotypes. Journal of Virology, 2011, 85, 2565-2581.	1.5	55
213	Adaptive Immune Responses in Hepatitis C Virus Infection. Current Topics in Microbiology and Immunology, 2013, 369, 243-262.	0.7	55
214	Replication of the hepatitis C virus. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2000, 14, 241-254.	1.0	54
215	Hepatitis C Virus NS2/3 Processing Is Required for NS3 Stability and Viral RNA Replication. Journal of Biological Chemistry, 2005, 280, 29604-29611.	1.6	54
216	New targets for antiviral therapy of chronic hepatitis C. Liver International, 2012, 32, 9-16.	1.9	54

#	Article	IF	CITATIONS
217	Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines. Nucleic Acids Research, 2013, 41, e199-e199.	6.5	53
218	Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. Rna, 2015, 21, 1219-1232.	1.6	53
219	Identification and characterization of amphiphysin II as a novel cellular interaction partner of the hepatitis C virus NS5A protein. Journal of General Virology, 2003, 84, 555-560.	1.3	52
220	Tuning a cellular lipid kinase activity adapts hepatitis C virus to replication in cell culture. Nature Microbiology, 2017, 2, 16247.	5.9	52
221	Maturation of secreted HCV particles by incorporation of secreted ApoE protects from antibodies by enhancing infectivity. Journal of Hepatology, 2017, 67, 480-489.	1.8	51
222	Mouse-Specific Residues of Claudin-1 Limit Hepatitis C Virus Genotype 2a Infection in a Human Hepatocyte Cell Line. Journal of Virology, 2010, 84, 964-975.	1.5	50
223	Low Oxygen Tension Enhances Hepatitis C Virus Replication. Journal of Virology, 2013, 87, 2935-2948.	1.5	50
224	Viral Infection at High Magnification: 3D Electron Microscopy Methods to Analyze the Architecture of Infected Cells. Viruses, 2015, 7, 6316-6345.	1.5	50
225	DDX60L Is an Interferon-Stimulated Gene Product Restricting Hepatitis C Virus Replication in Cell Culture. Journal of Virology, 2015, 89, 10548-10568.	1.5	50
226	A Slow Maturation Process Renders Hepatitis B Virus Infectious. Cell Host and Microbe, 2016, 20, 25-35.	5.1	50
227	Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant. PLoS Pathogens, 2015, 11, e1005345.	2.1	49
228	A reporter cell line for rapid and sensitive evaluation of hepatitis C virus infectivity and replication. Antiviral Research, 2009, 83, 148-155.	1.9	48
229	High plasma level of nucleocapsid-free envelope glycoprotein-positive lipoproteins in hepatitis C patients. Hepatology, 2012, 56, 39-48.	3.6	48
230	Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A. Journal of Hepatology, 2015, 63, 829-837.	1.8	47
231	Functional Properties of a Monoclonal Antibody Inhibiting the Hepatitis C Virus RNA-dependent RNA Polymerase. Journal of Biological Chemistry, 2002, 277, 593-601.	1.6	46
232	HCV proteins increase expression of heme oxygenase-1 (HO-1) and decrease expression of Bach1 in human hepatoma cells. Journal of Hepatology, 2006, 45, 5-12.	1.8	46
233	Aminoterminal Amphipathic α-Helix AH1 of Hepatitis C Virus Nonstructural Protein 4B Possesses a Dual Role in RNA Replication and Virus Production. PLoS Pathogens, 2014, 10, e1004501.	2.1	46
234	Analysis of hepatitis C virus resistance to silibinin <i>in vitro</i> and <i>in vivo</i> points to a novel mechanism involving nonstructural protein 4B. Hepatology, 2013, 57, 953-963.	3.6	44

#	Article	IF	CITATIONS
235	Comparative In Vitro Anti-Hepatitis C Virus Activities of a Selected Series of Polymerase, Protease, and Helicase Inhibitors. Antimicrobial Agents and Chemotherapy, 2008, 52, 3433-3437.	1.4	43
236	Production of infectious hepatitis C virus particles in three-dimensional cultures of the cell line carrying the genome-length dicistronic viral RNA of genotype 1b. Virology, 2006, 351, 381-392.	1.1	42
237	Immune protection against reinfection with nonprimate hepacivirus. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2430-E2439.	3.3	42
238	Persistence of HCV in Quiescent Hepatic Cells Under Conditions of an Interferon-Induced Antiviral Response. Gastroenterology, 2012, 143, 429-438.e8.	0.6	41
239	Semen inhibits Zika virus infection of cells and tissues from the anogenital region. Nature Communications, 2018, 9, 2207.	5.8	41
240	Targets for Antiviral Therapy of Hepatitis C. Seminars in Liver Disease, 2014, 34, 009-021.	1.8	40
241	Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-wide siRNA Screening. Molecular Cell, 2017, 65, 403-415.e8.	4.5	40
242	Factors That Determine the Antiviral Efficacy of HCV-Specific CD8+ T Cells Ex Vivo. Gastroenterology, 2013, 144, 426-436.	0.6	38
243	Innate Immune Responses to Hepatitis C Virus. Current Topics in Microbiology and Immunology, 2013, 369, 219-242.	0.7	38
244	Paradoxical role of antibodies in dengue virus infections: considerations for prophylactic vaccine development. Expert Review of Vaccines, 2016, 15, 467-482.	2.0	38
245	Interferonâ€induced degradation of the persistent hepatitis B virus cccDNA form depends on ISG20. EMBO Reports, 2021, 22, e49568.	2.0	38
246	Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin. Viruses, 2015, 7, 4461-4481.	1.5	37
247	Structural Studies of Self-Assembled Subviral Particles: Combining Cell-Free Expression with 110â€kHz MAS NMR Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 4787-4791.	7.2	37
248	Neutralizing antibody response against the B.1.617.2 (delta) and the B.1.1.529 (omicron) variants after a third mRNA SARS-CoV-2 vaccine dose in kidney transplant recipients. American Journal of Transplantation, 2022, 22, 1873-1883.	2.6	37
249	Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation. Nature Communications, 2021, 12, 7276.	5.8	37
250	Reovirus intermediate subviral particles constitute a strategy to infect intestinal epithelial cells by exploiting TGF-β dependent pro-survival signaling. Cellular Microbiology, 2016, 18, 1831-1845.	1.1	36
251	A Reverse Genetics System for Zika Virus Based on a Simple Molecular Cloning Strategy. Viruses, 2018, 10, 368.	1.5	36
252	RACK1 mediates rewiring of intracellular networks induced by hepatitis C virus infection. PLoS Pathogens, 2019, 15, e1008021.	2.1	36

#	Article	IF	CITATIONS
253	Synthesis, Biological Evaluation, and Molecular Docking of Combretastatin and Colchicine Derivatives and their hCE1â€Activated Prodrugs as Antiviral Agents. ChemMedChem, 2019, 14, 469-483.	1.6	36
254	Hepatitis C Virus Replication. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037093.	2.9	36
255	Reconstructing signaling pathways from RNAi data using probabilistic Boolean threshold networks. Bioinformatics, 2009, 25, 2229-2235.	1.8	35
256	Singleâ€cellâ€based image analysis of highâ€throughput cell array screens for quantification of viral infection. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 309-318.	1.1	35
257	C19orf66 is an interferon-induced inhibitor of HCV replication that restricts formation of the viral replication organelle. Journal of Hepatology, 2020, 73, 549-558.	1.8	35
258	Effects of NS2B-NS3 protease and furin inhibition on West Nile and Dengue virus replication. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 712-721.	2.5	34
259	Novel non-heteroarylpyrimidine (HAP) capsid assembly modifiers have a different mode of action from HAPs in vitro. Antiviral Research, 2018, 158, 135-142.	1.9	34
260	Hepatitis D virus-induced interferon response and administered interferons control cell division-mediated virus spread. Journal of Hepatology, 2022, 77, 957-966.	1.8	34
261	Alleviation of off-target effects from vector-encoded shRNAs via codelivered RNA decoys. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4007-16.	3.3	33
262	Syntenin regulates hepatitis C virus sensitivity to neutralizing antibody by promoting E2 secretion through exosomes. Journal of Hepatology, 2019, 71, 52-61.	1.8	33
263	Evaluation of accuracy, exclusivity, limit-of-detection and ease-of-use of LumiraDxâ,,¢: An antigen-detecting point-of-care device for SARS-CoV-2. Infection, 2022, 50, 395-406.	2.3	32
264	SARS-CoV-2 variants of concern display enhanced intrinsic pathogenic properties and expanded organ tropism in mouse models. Cell Reports, 2022, 38, 110387.	2.9	32
265	Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A. PLoS Pathogens, 2016, 12, e1005376.	2.1	30
266	Tissue culture and animal models for hepatitis C virus. Clinics in Liver Disease, 2003, 7, 23-43.	1.0	29
267	The quest for host targets to combat dengue virus infections. Current Opinion in Virology, 2016, 20, 47-54.	2.6	29
268	Overall Structural Model of NS5A Protein from Hepatitis C Virus and Modulation by Mutations Confering Resistance of Virus Replication to Cyclosporin A. Biochemistry, 2017, 56, 3029-3048.	1.2	29
269	Hepatitis C virus exploits cyclophilin A to evade PKR. ELife, 2020, 9, .	2.8	29
270	An in Vitro Assay for Hepatitis C Virus NS3 Serine Proteinase. Virology, 1995, 209, 52-59.	1.1	28

#	Article	IF	CITATIONS
271	Soraphen A: A broad-spectrum antiviral natural product with potent anti-hepatitis C virus activity. Journal of Hepatology, 2015, 63, 813-821.	1.8	28
272	Optimization of Substrateâ€Analogue Furin Inhibitors. ChemMedChem, 2017, 12, 1953-1968.	1.6	28
273	A Coupled Mathematical Model of the Intracellular Replication of Dengue Virus and the Host Cell Immune Response to Infection. Frontiers in Microbiology, 2020, 11, 725.	1.5	28
274	The Hepatitis B Virus Envelope Proteins: Molecular Gymnastics Throughout the Viral Life Cycle. Annual Review of Virology, 2020, 7, 263-288.	3.0	28
275	C-Src is required for complex formation between the hepatitis C virus-encoded proteins NS5A and NS5B: A prerequisite for replication. Hepatology, 2011, 53, 1127-1136.	3.6	27
276	Hepatitis C Virus-Specific Directly Acting Antiviral Drugs. Current Topics in Microbiology and Immunology, 2013, 369, 289-320.	0.7	27
277	Using soft X-ray tomography for rapid whole-cell quantitative imaging of SARS-CoV-2-infected cells. Cell Reports Methods, 2021, 1, 100117.	1.4	26
278	Cell-free expression, purification, and membrane reconstitution for NMR studies of the nonstructural protein 4B from hepatitis C virus. Journal of Biomolecular NMR, 2016, 65, 87-98.	1.6	25
279	Genome packaging of reovirus is mediated by the scaffolding property of the microtubule network. Cellular Microbiology, 2017, 19, e12765.	1.1	25
280	Dimer Organization of Membraneâ€Associated NS5A of Hepatitisâ€C Virus as Determined by Highly Sensitive ¹ Hâ€Detected Solidâ€State NMR. Angewandte Chemie - International Edition, 2021, 60, 5339-5347.	7.2	25
281	Genome-Wide CRISPR Screen Identifies RACK1 as a Critical Host Factor for Flavivirus Replication. Journal of Virology, 2021, 95, e0059621.	1.5	25
282	TCR-Redirected Human T Cells Inhibit Hepatitis C Virus Replication: Hepatotoxic Potential Is Linked to Antigen Specificity and Functional Avidity. Journal of Immunology, 2012, 189, 4510-4519.	0.4	24
283	Wheat germ cell-free expression: Two detergents with a low critical micelle concentration allow for production of soluble HCV membrane proteins. Protein Expression and Purification, 2015, 105, 39-46.	0.6	24
284	Novel indole–flutimide heterocycles with activity against influenza PA endonuclease and hepatitis C virus. MedChemComm, 2016, 7, 447-456.	3.5	24
285	Male offspring born to mildly ZIKV-infected mice are at risk of developing neurocognitive disorders in adulthood. Nature Microbiology, 2018, 3, 1161-1174.	5.9	24
286	Discovery of highly divergent lineages of plant-associated astro-like viruses sheds light on the emergence of potyviruses. Virus Research, 2019, 260, 38-48.	1.1	24
287	A Non-Replicative Role of the 3′ Terminal Sequence of the Dengue Virus Genome in Membranous Replication Organelle Formation. Cell Reports, 2020, 32, 107859.	2.9	23
288	Third COVID-19 vaccine dose with BNT162b2 in patients with ANCA-associated vasculitis. Annals of the Rheumatic Diseases, 2022, 81, 593-595.	0.5	23

#	Article	IF	CITATIONS
289	Normalizing for individual cell population context in the analysis of high-content cellular screens. BMC Bioinformatics, 2011, 12, 485.	1.2	22
290	A Proline-Tryptophan Turn in the Intrinsically Disordered Domain 2 of NS5A Protein Is Essential for Hepatitis C Virus RNA Replication. Journal of Biological Chemistry, 2015, 290, 19104-19120.	1.6	22
291	Hepatitis C virus-induced natural killer cell proliferation involves monocyte-derived cells and the OX40/OX40L axis. Journal of Hepatology, 2018, 68, 421-430.	1.8	22
292	The Role of Tissue Oxygen Tension in Dengue Virus Replication. Cells, 2018, 7, 241.	1.8	22
293	A Recurrent Neural Network for Particle Tracking in Microscopy Images Using Future Information, Track Hypotheses, and Multiple Detections. IEEE Transactions on Image Processing, 2020, 29, 3681-3694.	6.0	22
294	Neutralizing antibody response against variants of concern after vaccination of dialysis patients with BNT162b2. Kidney International, 2021, 100, 700-702.	2.6	22
295	Microscopyâ€based assay for semiâ€quantitative detection of SARS oVâ€2 specific antibodies in human sera. BioEssays, 2021, 43, e2000257.	1.2	22
296	The FDA-Approved Drug Cobicistat Synergizes with Remdesivir To Inhibit SARS-CoV-2 Replication <i>In Vitro</i> and Decreases Viral Titers and Disease Progression in Syrian Hamsters. MBio, 2022, 13, e0370521.	1.8	22
297	Neutralization of SARS-CoV-2 Variants of Concern in Kidney Transplant Recipients after Standard COVID-19 Vaccination. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 98-106.	2.2	22
298	Identification of Terfenadine as an Inhibitor of Human CD81-Receptor HCV-E2 Interaction: Synthesis and Structure Optimization. Molecules, 2008, 13, 1081-1110.	1.7	21
299	Investigation of a role for lysine residues in non-structural proteins 2 and 2/3 of the hepatitis C virus for their degradation and virus assembly. Journal of General Virology, 2009, 90, 1071-1080.	1.3	21
300	A Versatile Reporter System To Monitor Virus-Infected Cells and Its Application to Dengue Virus and SARS-CoV-2. Journal of Virology, 2021, 95, .	1.5	21
301	Determinants of Substrate Specificity in the NS3 Serine Proteinase of the Hepatitis C Virus. Virology, 1997, 237, 78-88.	1.1	20
302	Membrane undulation induced by NS4A of Dengue virus: a molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 2014, 32, 1552-1562.	2.0	20
303	A protocol for full-rotation soft X-ray tomography of single cells. STAR Protocols, 2022, 3, 101176.	0.5	20
304	Promotion of Hepatocellular Carcinoma by Hepatitis C Virus. Digestive Diseases, 2012, 30, 445-452.	0.8	19
305	TLR3 Activation by Zika Virus Stimulates Inflammatory Cytokine Production Which Dampens the Antiviral Response Induced by RIG-I-Like Receptors. Journal of Virology, 2021, 95, .	1.5	19
306	Experimental models to study the immunobiology of hepatitis C virus. Journal of General Virology, 2011, 92, 477-493.	1.3	19

#	Article	IF	CITATIONS
307	The lysine methyltransferase SMYD3 interacts with hepatitis C virus NS5A and is a negative regulator of viral particle production. Virology, 2014, 462-463, 34-41.	1.1	18
308	Severe Dysbiosis and Specific <i>Haemophilus</i> and <i>Neisseria</i> Signatures as Hallmarks of the Oropharyngeal Microbiome in Critically III Coronavirus Disease 2019 (COVID-19) Patients. Clinical Infectious Diseases, 2022, 75, e1063-e1071.	2.9	18
309	Application of the trak-Câ,,¢ HCV core assay for monitoring antiviral activity in HCV replication systems. Journal of Virological Methods, 2004, 118, 23-31.	1.0	17
310	Matrix Conditions and KLF2-Dependent Induction of Heme Oxygenase-1 Modulate Inhibition of HCV Replication by Fluvastatin. PLoS ONE, 2014, 9, e96533.	1.1	17
311	A Conserved NS3 Surface Patch Orchestrates NS2 Protease Stimulation, NS5A Hyperphosphorylation and HCV Genome Replication. PLoS Pathogens, 2015, 11, e1004736.	2.1	17
312	Reciprocal Effects of Fibroblast Growth Factor Receptor Signaling on Dengue Virus Replication and Virion Production. Cell Reports, 2019, 27, 2579-2592.e6.	2.9	17
313	SARSâ€CoVâ€2 infection remodels the host protein thermal stability landscape. Molecular Systems Biology, 2021, 17, e10188.	3.2	17
314	Glycine Zipper Motifs in Hepatitis C Virus Nonstructural Protein 4B Are Required for the Establishment of Viral Replication Organelles. Journal of Virology, 2018, 92, .	1.5	17
315	Hepatitis C virus core+1/ARF protein decreases hepcidin transcription through an AP1 binding site. Journal of General Virology, 2013, 94, 1528-1534.	1.3	16
316	Protonâ€Detected Solidâ€State NMR of the Cellâ€Free Synthesized αâ€Helical Transmembrane Protein NS4B from Hepatitis C Virus. ChemBioChem, 2020, 21, 1453-1460.	1.3	16
317	A Randomized Open label Phase-II Clinical Trial with or without Infusion of Plasma from Subjects after Convalescence of SARS-CoV-2 Infection in High-Risk Patients with Confirmed Severe SARS-CoV-2 Disease (RECOVER): A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21, 828.	0.7	16
318	Detecting host factors involved in virus infection by observing the clustering of infected cells in siRNA screening images. Bioinformatics, 2010, 26, i653-i658.	1.8	15
319	Functional expression, purification, characterization, and membrane reconstitution of non-structural protein 2 from hepatitis C virus. Protein Expression and Purification, 2015, 116, 1-6.	0.6	15
320	A Novel Inhibitor IDPP Interferes with Entry and Egress of HCV by Targeting Glycoprotein E1 in a Genotype-Specific Manner. Scientific Reports, 2017, 7, 44676.	1.6	15
321	An alternative membrane topology permits lipid droplet localization of peroxisomal fatty acyl-CoA reductase 1. Journal of Cell Science, 2019, 132, .	1.2	15
322	Neutralizing antibody activity against the B.1.617.2 (delta) variant 8Âmonths after two-dose vaccination with BNT162b2 in health care workers. Clinical Microbiology and Infection, 2022, 28, 1024.e7-1024.e12.	2.8	15
323	Neutralizing Antibody Activity Against the B.1.617.2 (delta) Variant Before and After a Third BNT162b2 Vaccine Dose in Hemodialysis Patients. Frontiers in Immunology, 2022, 13, 840136.	2.2	15
324	Hepatitis C virus infection inhibits P-body granule formation in human livers. Journal of Hepatology, 2015, 62, 785-790.	1.8	14

#	Article	IF	CITATIONS
325	Correlative Light Electron Microscopy (CLEM) for Tracking and Imaging Viral Protein Associated Structures in Cryo-immobilized Cells. Journal of Visualized Experiments, 2018, , .	0.2	14
326	Adaptation of the Hepatitis C Virus to Cell Culture. Methods in Molecular Biology, 2009, 510, 361-372.	0.4	14
327	Hepatitis C Virus Activates a Neuregulin-Driven Circuit to Modify Surface Expression of Growth Factor Receptors of the ErbB Family. PLoS ONE, 2016, 11, e0148711.	1.1	14
328	Hepatitis C virus replicons: dinosaurs still in business?. Journal of Viral Hepatitis, 2009, 16, 1-9.	1.0	13
329	Temporal control of the integrated stress response by a stochastic molecular switch. Science Advances, 2022, 8, eabk2022.	4.7	13
330	Development of a high-throughput pyrosequencing assay for monitoring temporal evolution and resistance associated variant emergence in the Hepatitis C virus protease coding-region. Antiviral Research, 2014, 110, 52-59.	1.9	12
331	Inhibition of hepatitis C virus gene expression by adenoviral vectors encoding antisense RNA in vitro and in vivo. Journal of Hepatology, 2011, 55, 19-28.	1.8	11
332	HCV modifies EGF signalling and upregulates production of CXCR2 ligands: Role in inflammation and antiviral immune response. Journal of Hepatology, 2018, 69, 594-602.	1.8	11
333	Host factor prioritization for pan-viral genetic perturbation screens using random intercept models and network propagation. PLoS Computational Biology, 2020, 16, e1007587.	1.5	11
334	The Basicity Makes the Difference: Improved Canavanine-Derived Inhibitors of the Proprotein Convertase Furin. ACS Medicinal Chemistry Letters, 2021, 12, 426-432.	1.3	11
335	The Compound SBI-0090799 Inhibits Zika Virus Infection by Blocking <i>De Novo</i> Formation of the Membranous Replication Compartment. Journal of Virology, 2021, 95, e0099621.	1.5	11
336	High-throughput RNA interference screens integrative analysis: Towards a comprehensive understanding of the virus-host interplay. World Journal of Virology, 2013, 2, 18.	1.3	11
337	In vitro models for hepatitis C. Virus Research, 2001, 82, 25-32.	1.1	10
338	Unexpected host range of hepatitis C virus replicons. Hepatology, 2004, 39, 835-838.	3.6	10
339	A novel function for a micro RNA: Negative regulators can do positive for the hepatitis C virus. Hepatology, 2006, 43, 612-615.	3.6	10
340	Editorial: An expanded view of viruses. FEMS Microbiology Reviews, 2017, 41, 1-4.	3.9	10
341	Cyclophilin A allows the allosteric regulation of a structural motif in the disordered domain 2 of NS5A and thereby fine-tunes HCV RNA replication. Journal of Biological Chemistry, 2019, 294, 13171-13185.	1.6	10
342	Towards curative therapy of chronic viral hepatitis. Zeitschrift Fur Gastroenterologie, 2019, 57, 61-73.	0.2	10

#	Article	IF	CITATIONS
343	Replication-Independent Generation and Morphological Analysis of Flavivirus Replication Organelles. STAR Protocols, 2020, 1, 100173.	0.5	10
344	Determinants in Nonstructural Protein 4A of Dengue Virus Required for RNA Replication and Replication Organelle Biogenesis. Journal of Virology, 2021, 95, e0131021.	1.5	10
345	Generation of T-cell receptors targeting a genetically stable and immunodominant cytotoxic T-lymphocyte epitope within hepatitis C virus non-structural protein 3. Journal of General Virology, 2012, 93, 247-258.	1.3	10
346	The Biogenesis of Dengue Virus Replication Organelles Requires the ATPase Activity of Valosin-Containing Protein. Viruses, 2021, 13, 2092.	1.5	10
347	Persistent intracellular pathogens. FEMS Microbiology Reviews, 2012, 36, 513-513.	3.9	9
348	Heterologous Src Homology 4 Domains Support Membrane Anchoring and Biological Activity of HIV-1 Nef. Journal of Biological Chemistry, 2014, 289, 14030-14044.	1.6	9
349	Expression of the Novel Hepatitis C Virus Core+1/ARF Protein in the Context of JFH1-Based Replicons. Journal of Virology, 2015, 89, 5164-5170.	1.5	9
350	Type I and type II interferon responses in two human liver cell lines (Huh-7 and HuH6). Genomics Data, 2016, 7, 166-170.	1.3	9
351	Deep probabilistic tracking of particles in fluorescence microscopy images. Medical Image Analysis, 2021, 72, 102128.	7.0	9
352	Inhibition of hepatitis C virus RNA translation by antisense bile acid conjugated phosphorothioate modified oligodeoxynucleotides (ODN). Antiviral Research, 2013, 97, 49-59.	1.9	8
353	Broad neutralization of hepatitis C virusâ€resistant variants by Civacir hepatitis C immunoglobulin. Hepatology, 2016, 64, 1495-1506.	3.6	8
354	TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus. Nucleic Acids Research, 2017, 45, e3-e3.	6.5	8
355	mRNAs biotinylated within the 5′ cap and protected against decapping: new tools to capture RNA–protein complexes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180167.	1.8	8
356	Natural SARS-CoV-2 infection results in higher neutralization response against variants of concern compared with 2-dose BNT162b2 vaccination in kidney transplant recipients. Kidney International, 2022, 101, 639-642.	2.6	8
357	Indelibly Stamped by Hepatitis C Virus Infection: Persistent Epigenetic Signatures Increasing Liver Cancer Risk. Gastroenterology, 2019, 156, 2130-2133.	0.6	7
358	Mechanisms governing hepadnaviral nucleocapsid assembly. Journal of Hepatology, 1993, 17, S15-S19.	1.8	6
359	Symmetric Anti-HCV Agents: Synthesis, Antiviral Properties, and Conformational Aspects of Core Scaffolds. ACS Omega, 2019, 4, 11440-11454.	1.6	6
360	Hyperparameter optimization for image analysis: application to prostate tissue images and live cell data of virus-infected cells. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1847-1857.	1.7	6

#	Article	IF	CITATIONS
361	Impaired Neutralizing Antibody Activity against B.1.617.2 (Delta) after Anti-SARS-CoV-2 Vaccination in Patients Receiving Anti-CD20 Therapy. Journal of Clinical Medicine, 2022, 11, 1739.	1.0	6
362	Hepatitis C Virus Replicons Volume 3 and 4. Gastroenterology, 2013, 144, 13-15.	0.6	5
363	The predominant species of nonstructural protein 4B in hepatitis C virus-replicating cells is not palmitoylated. Journal of General Virology, 2015, 96, 1696-1701.	1.3	5
364	Novel nucleoside analogues targeting <scp>HCV</scp> replication through an <scp>NS</scp> 5Aâ€dependent inhibition mechanism. Chemical Biology and Drug Design, 2017, 90, 352-367.	1.5	5
365	Immune-mediated effects targeting hepatitis C virus in a syngeneic replicon cell transplantation mouse model. Gut, 2018, 67, 1525-1535.	6.1	5
366	Prodrug Activation by a Viral Protease: Evaluating Combretastatin Peptide Hybrids To Selectively Target Infected Cells. ACS Medicinal Chemistry Letters, 2019, 10, 1115-1121.	1.3	5
367	Identification of Interleukin1β as an Amplifier of Interferon alpha-induced Antiviral Responses. PLoS Pathogens, 2020, 16, e1008461.	2.1	5
368	Investigation of NS3 Protease Resistance-Associated Variants and Phenotypes for the Prediction of Treatment Response to HCV Triple Therapy. PLoS ONE, 2016, 11, e0156731.	1.1	5
369	A Hepatitis C virus genotype 1b post-transplant isolate with high replication efficiency in cell culture and its adaptation to infectious virus production in vitro and in vivo. PLoS Pathogens, 2022, 18, e1010472.	2.1	5
370	Colocalization analysis and particle tracking in multi-channel fluorescence microscopy images. , 2017, , ,		4
371	Strukturelle Untersuchung subviraler Partikel durch die Kombination von zellfreier Proteinherstellung mit 110 kHz MAS-NMR-Spektroskopie. Angewandte Chemie, 2018, 130, 4877-4882.	1.6	4
372	Two-filter probabilistic data association for tracking of virus particles in fluorescence microscopy images. , 2018, , .		4
373	Dengue virus is sensitive to inhibition prior to productive replication. Cell Reports, 2021, 37, 109801.	2.9	4
374	Dimer Organization of Membraneâ€Associated NS5A of Hepatitisâ€C Virus as Determined by Highly Sensitive 1 Hâ€Detected Solidâ€&tate NMR. Angewandte Chemie, 2021, 133, 5399-5407.	1.6	3
375	Nanoparticular Inhibitors of Flavivirus Proteases from Zika, West Nile and Dengue Virus Are Cell-Permeable Antivirals. ACS Medicinal Chemistry Letters, 2021, 12, 1955-1961.	1.3	3
376	Serum versus intrahepatic HCV RNA and liver histology. Hepatology, 2002, 35, 1552-1553.	3.6	2
377	Hepatitis viruses in the XXI century. Virus Research, 2007, 127, 129-130.	1.1	2
378	A sensor at the lipidâ€protein interface: Lipid peroxidation controls hepatitis C virus replication. Hepatology, 2015, 61, 1083-1085.	3.6	2

#	Article	IF	CITATIONS
379	Hepatitis C Virus—From Discovery to Cure. JAMA - Journal of the American Medical Association, 2016, 316, 1254.	3.8	2
380	Hepatitis C virus's next top models?. Nature Microbiology, 2016, 1, 15018.	5.9	2
381	Inhibition of Hepatitis C virus by nucleic acid-based antiviral approaches. , 2006, , 47-86.		2
382	P147: A phenotypic NS3-protease inhibitor resistance assay to characterize resistance-associated mutations in patients. Journal of Viral Hepatitis, 2015, 22, 93-93.	1.0	1
383	A Novel Cis-Acting RNA Structural Element Embedded in the Core Coding Region of the Hepatitis C Virus Genome Directs Internal Translation Initiation of the Overlapping Core+1 ORF. International Journal of Molecular Sciences, 2020, 21, 6974.	1.8	1
384	Redesigning of the cap conformation and symmetry of the diphenylethyne core to yield highly potent pan-genotypic NS5A inhibitors with high potency and high resistance barrier. European Journal of Medicinal Chemistry, 2022, 229, 114034.	2.6	1
385	417 Subgenomic hepatitis C replicon deriving from a clinical isolate with virologic non-response to IFN-based therapy and IFN resistance in vitro. Journal of Hepatology, 2006, 44, S157.	1.8	0
386	18 BILE ACIDS ENHANCE GENOTYPE 1 HEPATITIS C VIRUS REPLICATION. Journal of Hepatology, 2008, 48, S9.	1.8	0
387	607 NEUTRALIZING HOST RESPONSES IN HEPATITIS C VIRUS INFECTION TARGET VIRAL ENTRY AT POST-BINDING STEPS AND MEMBRANE FUSION. Journal of Hepatology, 2008, 48, S226.	1.8	0
388	Cell culture systems for the hepatitis C virus and their application for development of specifically targeted antiviral therapy for hepatitis C (Stat-C). Arzneimittelforschung, 2010, 60, 695-696.	0.5	0
389	Hepatitis C: A mouse at the end of the tunnel. Cell Research, 2013, 23, 1343-1344.	5.7	0
390	A monocytic detour to replicate patientâ€derived hepatitis C virus in hepatoma cells and its use for phenotypic analyses. Hepatology, 2015, 61, 1112-1114.	3.6	0
391	P117: Hepatitis C Virus mediates NRG1â€dependent downâ€regulation of ErbB3, thereby modifies ErbB receptor family composition at the cell surface. Journal of Viral Hepatitis, 2015, 22, 79-80.	1.0	0
392	Going full circle: Validation of P-body dispersion in hepatitis C virus-infected patients. Journal of Hepatology, 2015, 62, 756-758.	1.8	0
393	A Novel System to Study Dengue Virus Replication Organelle Formation Independent from Viral RNA Replication. Proceedings (mdpi), 2020, 50, .	0.2	0
394	ER-Shaping Atlastin Proteins Act as Central Hubs to Promote Flavivirus Replication and Virion Assembly. Proceedings (mdpi), 2020, 50, .	0.2	0
395	Hepatitis C Virus (Flaviviridae). , 2021, , 386-396.		0
396	Hepatitis C Virus Replication in Cell Culture. , 2004, , 108-122.		0

#	Article	IF	CITATIONS
397	Mechanisms Regulating Nucleocapsid Formation of the Hepatitis B Viruses. , 1993, , 49-66.		0
398	Chronic hepatitis C: Portrait of a silent epidemic and the etiologic agent. , 2008, , 95-120.		0
399	Genotypic resistance testing of HCV - is there a clinical need?. GMS Infectious Diseases, 2016, 4, Doc05.	0.5	0
400	Title is missing!. , 2020, 16, e1007587.		0
401	Title is missing!. , 2020, 16, e1007587.		0
402	Title is missing!. , 2020, 16, e1007587.		0
403	Title is missing!. , 2020, 16, e1007587.		0
404	In Vitro Replication Models. , 0, , 496-510.		0
405	Deep Neural Network for Combined Particle Tracking and Colocalization Analysis in Two-Channel Microscopy Images. , 2022, , .		0