Hong Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2878979/publications.pdf Version: 2024-02-01

HONCLINO

#	Article	IF	CITATIONS
1	Tacrine–Ferulic Acid–Nitric Oxide (NO) Donor Trihybrids as Potent, Multifunctional Acetyl- and Butyrylcholinesterase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 4309-4321.	6.4	122
2	Nogoâ€66 inhibits adhesion and migration of microglia via GTPase Rho pathway <i>in vitro</i> . Journal of Neurochemistry, 2012, 120, 721-731.	3.9	72
3	Tenascin-R Plays a Role in Neuroprotection via Its Distinct Domains That Coordinate to Modulate the Microglia Function. Journal of Biological Chemistry, 2005, 280, 8316-8323.	3.4	61
4	Nogoâ€66 and myelinâ€associated glycoprotein (MAG) inhibit the adhesion and migration of Nogoâ€66 receptor expressing human glioma cells. Journal of Neurochemistry, 2004, 90, 1156-1162.	3.9	46
5	Nafamostat mesilate attenuates neuronal damage in a rat model of transient focal cerebral ischemia through thrombin inhibition. Scientific Reports, 2014, 4, 5531.	3.3	44
6	Nafamostat mesilate improves function recovery after stroke by inhibiting neuroinflammation in rats. Brain, Behavior, and Immunity, 2016, 56, 230-245.	4.1	43
7	Quercetin promotes motor and sensory function recovery following sciatic nerve-crush injury in C57BL/6J mice. Journal of Nutritional Biochemistry, 2017, 46, 57-67.	4.2	39
8	The CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity after stroke. Journal of Neuroinflammation, 2020, 17, 171.	7.2	38
9	WIN55, 212-2 promotes differentiation of oligodendrocyte precursor cells and improve remyelination through regulation of the phosphorylation level of the ERK 1/2 via cannabinoid receptor 1 after stroke-induced demyelination. Brain Research, 2013, 1491, 225-235.	2.2	36
10	The Nogo/Nogo Receptor (NgR) Signal Is Involved in Neuroinflammation through the Regulation of Microglial Inflammatory Activation. Journal of Biological Chemistry, 2015, 290, 28901-28914.	3.4	33
11	The blockage of the Nogo/NgR signal pathway in microglia alleviates the formation of Aβ plaques and tau phosphorylation in APP/PS1 transgenic mice. Journal of Neuroinflammation, 2016, 13, 56.	7.2	33
12	Quercetin promotes neurite growth through enhancing intracellular cAMP level and GAP-43 expression. Chinese Journal of Natural Medicines, 2015, 13, 667-672.	1.3	27
13	p75 neurotrophin receptor interacts with and promotes BACE1 localization in endosomes aggravating amyloidogenesis. Journal of Neurochemistry, 2018, 144, 302-317.	3.9	27
14	The adhesion and migration of microglia to β-amyloid (Aβ) is decreased with aging and inhibited by Nogo/NgR pathway. Journal of Neuroinflammation, 2018, 15, 210.	7.2	26
15	Neurogenesis promoted by the CD200/CD200R signaling pathway following treadmill exercise enhances post-stroke functional recovery in rats. Brain, Behavior, and Immunity, 2019, 82, 354-371.	4.1	24
16	Nafamostat Mesilate Improves Neurological Outcome and Axonal Regeneration after Stroke in Rats. Molecular Neurobiology, 2017, 54, 4217-4231.	4.0	23
17	Astrocytic <scp>p75^{NTR}</scp> expression provoked by ischemic stroke exacerbates the blood–brain barrier disruption. Glia, 2022, 70, 892-912.	4.9	22
18	Design, synthesis and evaluation of tacrine–flurbiprofen–nitrate trihybrids as novel anti-Alzheimer's disease agents. Bioorganic and Medicinal Chemistry, 2013, 21, 2462-2470.	3.0	21

Hong Liao

#	Article	IF	CITATIONS
19	Small Molecules for Neural Stem Cell Induction. Stem Cells and Development, 2018, 27, 297-312.	2.1	21
20	The natural product 4,10-aromadendranediol induces neuritogenesis in neuronal cells in vitro through activation of the ERK pathway. Acta Pharmacologica Sinica, 2017, 38, 29-40.	6.1	12
21	Expression of Nogo receptor 1 in microglia during development and following traumatic brain injury. Brain Research, 2015, 1627, 41-51.	2.2	11
22	Conversion of human urine-derived cells into neuron-like cells by small molecules. Molecular Biology Reports, 2020, 47, 2713-2722.	2.3	11
23	Nogo receptor impairs the clearance of fibril amyloidâ€Î² by microglia and accelerates Alzheimer'sâ€like disease progression. Aging Cell, 2021, 20, e13515.	6.7	11
24	p75NTR Promotes Astrocyte Proliferation in Response to Cortical Stab Wound. Cellular and Molecular Neurobiology, 2020, , 1.	3.3	7
25	Brain circuit dysfunction in specific symptoms of depression. European Journal of Neuroscience, 2022, 55, 2393-2403.	2.6	6
26	Screening of natural compounds with neuronal differentiation promoting effects in a cell-based model. Chinese Journal of Natural Medicines, 2015, 13, 602-608.	1.3	4
27	Sortilin deletion in the prefrontal cortex and hippocampus ameliorates depressive-like behaviors in mice via regulating ASM/ceramide signaling. Acta Pharmacologica Sinica, 2022, 43, 1940-1954.	6.1	4