Shafiq A Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2878837/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Strengthening and Sustaining Inter-Institutional Research Collaborations and Partnerships. International Journal of Environmental Research and Public Health, 2021, 18, 2727.	1.2	8
2	Community Engagement Practices at Research Centers in U.S. Minority Institutions: Priority Populations and Innovative Approaches to Advancing Health Disparities Research. International Journal of Environmental Research and Public Health, 2021, 18, 6675.	1.2	6
3	Alterations in TGFβ signaling during prostate cancer progression. American Journal of Clinical and Experimental Urology, 2021, 9, 318-328.	0.4	0
4	Androgen attenuates the inactivating phospho–Ser-127 modification of yes-associated protein 1 (YAP1) and promotes YAP1 nuclear abundance and activity. Journal of Biological Chemistry, 2020, 295, 8550-8559.	1.6	8
5	Small Molecule Inhibitors Targeting Gαi2 Protein Attenuate Migration of Cancer Cells. Cancers, 2020, 12, 1631.	1.7	4
6	Differential roles and activation of mammalian target of rapamycin complexes 1 and 2 during cell migration in prostate cancer cells. Prostate, 2020, 80, 412-423.	1.2	9
7	Novel role of Giα2 in cell migration: Downstream of PI3â€kinase–AKT and Rac1 in prostate cancer cells. Journal of Cellular Physiology, 2019, 234, 802-815.	2.0	12
8	Essential role of JunD in cell proliferation is mediated via MYC signaling in prostate cancer cells. Cancer Letters, 2019, 448, 155-167.	3.2	42
9	Ethnic differences in TGFβ-signaling pathway may contribute to prostate cancer health disparity. Carcinogenesis, 2018, 39, 546-555.	1.3	16
10	Differential role of PTEN in transforming growth factor β (TGFâ€Î²) effects on proliferation and migration in prostate cancer cells. Prostate, 2018, 78, 377-389.	1.2	23
11	TGFâ€Î² Effects on Prostate Cancer Cell Migration and Invasion Require FosB. Prostate, 2017, 77, 72-81.	1.2	79
12	JunD Is Required for Proliferation of Prostate Cancer Cells and Plays a Role in Transforming Growth Factor-β (TGF-β)-induced Inhibition of Cell Proliferation. Journal of Biological Chemistry, 2016, 291, 17964-17976.	1.6	36
13	Inhibitor of differentiation 1 (Id1) and Id3 proteins play different roles in TGFÎ ² effects on cell proliferation and migration in prostate cancer cells. Prostate, 2013, 73, 624-633.	1.2	28
14	Expression of TGFβ3 and its effects on migratory and invasive behavior of prostate cancer cells: involvement of PI3-kinase/AKT signaling pathway. Clinical and Experimental Metastasis, 2013, 30, 13-23.	1.7	38
15	Selectively Targeting Prostate Cancer with Antiandrogen Equipped Histone Deacetylase Inhibitors. ACS Chemical Biology, 2013, 8, 2550-2560.	1.6	58
16	TGF-β Effects on Prostate Cancer Cell Migration and Invasion Are Mediated by PGE2 through Activation of PI3K/AKT/mTOR Pathway. Endocrinology, 2013, 154, 1768-1779.	1.4	164
17	The Essential Role of Giα2 in Prostate Cancer Cell Migration. Molecular Cancer Research, 2012, 10, 1380-1388.	1.5	16
18	Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-Â)-induced Smad signaling in prostate cancer cells. Carcinogenesis, 2012, 33, 2054-2064.	1.3	26

Shafiq A Khan

#	Article	IF	CITATIONS
19	Expression of nodal and nodal receptors in prostate stem cells and prostate cancer cells: Autocrine effects on cell proliferation and migration. Prostate, 2011, 71, 1084-1096.	1.2	40
20	Oxytocin Induces the Migration of Prostate Cancer Cells: Involvement of the Gi-Coupled Signaling Pathway. Molecular Cancer Research, 2010, 8, 1164-1172.	1.5	55
21	Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Molecular and Cellular Endocrinology, 2008, 295, 115-120.	1.6	191
22	Follicle-Stimulating Hormone-Induced Aromatase in Immature Rat Sertoli Cells Requires an Active Phosphatidylinositol 3-Kinase Pathway and Is Inhibited via the Mitogen-Activated Protein Kinase Signaling Pathway. Molecular Endocrinology, 2006, 20, 608-618.	3.7	66
23	Autocrine regulation of steroidogenic function of Leydig cells by transforming growth factor-α. Molecular and Cellular Endocrinology, 2004, 224, 29-39.	1.6	31
24	Transforming growth factor-β effects on morphology of immature rat Leydig cells. Molecular and Cellular Endocrinology, 2002, 195, 65-77.	1.6	22
25	Growth Factor Requirements for DNA Synthesis by Leydig Cells from the Immature Rat1. Biology of Reproduction, 1992, 46, 335-341.	1.2	107
26	Differential Effects of Follicle-Stimulating Hormone and Luteinizing Hormone on Leydig Cell Function and Restoration of Spermatogenesis in Hypophysectomized and Photoinhibited Djungarian Hamsters	1.2	57

(Phodopus Sungorus). Biology of Reproduction, 1989, 41, 871-880.