Ulrich Theopold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2878598/publications.pdf

Version: 2024-02-01

80 4,287 36
papers citations h-index

87 87 87 3354 all docs docs citations times ranked citing authors

114465

63

g-index

#	Article	IF	Citations
1	Proto-pyroptosis: An Ancestral Origin for Mammalian Inflammatory Cell Death Mechanism in Drosophila melanogaster. Journal of Molecular Biology, 2022, 434, 167333.	4.2	5
2	A Population Genomic Investigation of Immune Cell Diversity and Phagocytic Capacity in a Butterfly. Genes, 2021, 12, 279.	2.4	5
3	Anti-Fibrotic Activity of an Antimicrobial Peptide in a <i>Drosophila</i> Model. Journal of Innate Immunity, 2021, 13, 376-390.	3.8	7
4	TRP channels, the missing link for Ca2+ tuning by a unicellular eukaryotic parasite?. Cell Calcium, 2021, 98, 102449.	2.4	0
5	High-Resolution Infection Kinetics of Entomopathogenic Nematodes Entering Drosophila melanogaster. Insects, 2020, 11, 60.	2.2	11
6	Drosophila melanogaster Responses against Entomopathogenic Nematodes: Focus on Hemolymph Clots. Insects, 2020, 11, 62.	2.2	18
7	Differential Expression of Immune Genes between Two Closely Related Beetle Species with Different Immunocompetence following Attack by Asecodes parviclava. Genome Biology and Evolution, 2020, 12, 522-534.	2.5	6
8	Physiological Tradeoffs of Immune Response Differs by Infection Type in Pieris napi. Frontiers in Physiology, 2020, 11, 576797.	2.8	4
9	Tissue-autonomous immune response regulates stress signaling during hypertrophy. ELife, 2020, 9, .	6.0	12
10	Data on Drosophila clots and hemocyte morphologies using GFP-tagged secretory proteins: Prophenoloxidase and transglutaminase. Data in Brief, 2019, 25, 104229.	1.0	7
11	Insect hemolymph coagulation: Kinetics of classically and non-classically secreted clotting factors. Insect Biochemistry and Molecular Biology, 2019, 109, 63-71.	2.7	24
12	The Immune Phenotype of Three <i>Drosophila</i> Leukemia Models. G3: Genes, Genomes, Genetics, 2017, 7, 2139-2149.	1.8	18
13	Monitoring the effect of pathogenic nematodes on locomotion of Drosophila larvae. Fly, 2017, 11, 208-217.	1.7	7
14	Thioester-containing proteins: At the crossroads of immune effector mechanisms. Virulence, 2017, 8, 1468-1470.	4.4	12
15	Insect Antimicrobial Defences. Advances in Insect Physiology, 2017, , 1-33.	2.7	30
16	Characterization of Reproductive Dormancy in Male Drosophila melanogaster. Frontiers in Physiology, 2016, 7, 572.	2.8	43
17	Geographic variation and tradeâ€offs in parasitoid virulence. Journal of Animal Ecology, 2016, 85, 1595-1604.	2.8	19
18	Multi-target Chromogenic Whole-mount ln Situ Hybridization for Comparing Gene Expression Domains in Drosophila Embryos. Journal of Visualized Experiments, 2016, , e53830.	0.3	3

#	Article	IF	CITATIONS
19	The <i>Drosophila</i> Chitinase-Like Protein IDGF3 Is Involved in Protection against Nematodes and in Wound Healing. Journal of Innate Immunity, 2016, 8, 199-210.	3.8	62
20	Slowed aging during reproductive dormancy is reflected in genome-wide transcriptome changes in Drosophila melanogaster. BMC Genomics, 2016, 17, 50.	2.8	95
21	Apoptosis in Hemocytes Induces a Shift in Effector Mechanisms in the Drosophila Immune System and Leads to a Pro-Inflammatory State. PLoS ONE, 2015, 10, e0136593.	2.5	49
22	Differences in Cellular Immune Competence Explain Parasitoid Resistance for Two Coleopteran Species. PLoS ONE, 2014, 9, e108795.	2.5	19
23	The Sleeping Beauty: How Reproductive Diapause Affects Hormone Signaling, Metabolism, Immune Response and Somatic Maintenance in Drosophila melanogaster. PLoS ONE, 2014, 9, e113051.	2.5	150
24	Damage signals in the insect immune response. Frontiers in Plant Science, 2014, 5, 342.	3.6	96
25	A <i>Drosophila</i> immune response against Ras-induced overgrowth. Biology Open, 2014, 3, 250-260.	1.2	39
26	The Drosophila clotting system and its messages for mammals. Developmental and Comparative Immunology, 2014, 42, 42-46.	2.3	59
27	Genome-Wide Transcriptional Analysis of <i>Drosophila</i> Larvae Infected by Entomopathogenic Nematodes Shows Involvement of Complement, Recognition and Extracellular Matrix Proteins. Journal of Innate Immunity, 2014, 6, 192-204.	3.8	102
28	An improved method for nematode infection assays in Drosophila larvae. Fly, 2012, 6, 75-79.	1.7	23
29	Otto Schmidt (1947–2011) – Open Doors and an Open Mind. Journal of Innate Immunity, 2012, 4, 117-118.	3.8	0
30	Coagulation Systems of Invertebrates and Vertebrates and Their Roles in Innate Immunity: The Same Side of Two Coins?. Journal of Innate Immunity, 2011, 3, 34-40.	3.8	111
31	Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood, 2011, 118, 2589-2598.	1.4	155
32	SWI/SNF regulates the alternative processing of a specific subset of pre-mRNAs in Drosophila melanogaster. BMC Molecular Biology, 2011, 12, 46.	3.0	21
33	Clotting Factors and Eicosanoids Protect against Nematode Infections. Journal of Innate Immunity, 2011, 3, 65-70.	3.8	71
34	Hemostasis in Invertebrates and Vertebrates: An Evolutionary Excursion. Journal of Innate Immunity, 2011, 3, 1-2.	3.8	6
35	Pathogen Entrapment by Transglutaminaseâ€"A Conserved Early Innate Immune Mechanism. PLoS Pathogens, 2010, 6, e1000763.	4.7	169
36	Role of Adhesion in Arthropod Immune Recognition. Annual Review of Entomology, 2010, 55, 485-504.	11.8	59

#	Article	IF	Citations
37	The Tinkerer at Work. Journal of Innate Immunity, 2009, 1, 281-281.	3.8	1
38	Activation of Insect Phenoloxidase after Injury: Endogenous versus Foreign Elicitors. Journal of Innate Immunity, 2009, $1,301-308$.	3.8	89
39	A bad boy comes good. Nature, 2009, 461, 486-487.	27.8	26
40	Fondue and transglutaminase in the Drosophila larval clot. Journal of Insect Physiology, 2008, 54, 586-592.	2.0	56
41	INSECT AND VERTEBRATE IMMUNITY: KEY SIMILARITIES VERSUS DIFFERENCES. , 2008, , 1-23.		9
42	Crystal cell rupture after injury in $\langle i \rangle$ Drosophila $\langle j \rangle$ requires the JNK pathway, small GTPases and the TNF homolog Eiger. Journal of Cell Science, 2007, 120, 1209-1215.	2.0	161
43	Mechanisms of Drosophila Immunity - An Innate Immune System at Work. Current Immunology Reviews, 2007, 3, 276-288.	1.2	10
44	Evidence for an immune function of lepidopteran silk proteins. Biochemical and Biophysical Research Communications, 2007, 352, 317-322.	2.1	21
45	A role for Hemolectin in coagulation and immunity in Drosophila melanogaster. Developmental and Comparative Immunology, 2007, 31, 1255-1263.	2.3	92
46	The Toll immune-regulated Drosophila protein Fondue is involved in hemolymph clotting and puparium formation. Developmental Biology, 2006, 295, 156-163.	2.0	53
47	Hemolymph coagulation and phenoloxidase in larvae. Developmental and Comparative Immunology, 2005, 29, 669-679.	2.3	127
48	Proteomic Analysis of the Drosophila Larval Hemolymph Clot. Journal of Biological Chemistry, 2004, 279, 52033-52041.	3.4	133
49	Proteomics of the Drosophila immune response. Trends in Biotechnology, 2004, 22, 600-605.	9.3	26
50	Lectin-induced haemocyte inactivation in insects. Journal of Insect Physiology, 2004, 50, 955-963.	2.0	17
51	Isolation and Characterization of Hemolymph Clotting Factors in Drosophila melanogaster by a Pullout Method. Current Biology, 2004, 14, 625-629.	3.9	135
52	An extracellular driving force of cell-shape changes. BioEssays, 2004, 26, 1344-1350.	2.5	9
53	Coagulation in arthropods: defence, wound closure and healing. Trends in Immunology, 2004, 25, 289-294.	6.8	297
54	A Drosophila salivary gland mucin is also expressed in immune tissues: evidence for a function in coagulation and the entrapment of bacteria. Insect Biochemistry and Molecular Biology, 2004, 34, 1297-1304.	2.7	71

#	Article	IF	CITATIONS
55	Possible function of two insect phospholipid-hydroperoxide glutathione peroxidases. Journal of Insect Physiology, 2003, 49, 1-9.	2.0	26
56	Genetic analysis of two distinct reproductive strategies in sexual and asexual field populations of an endoparasitic wasp, Venturia canescens. Heredity, 2003, 90, 291-297.	2.6	13
57	Insect hemolymph clotting: evidence for interaction between the coagulation system and the prophenoloxidase activating cascade. Insect Biochemistry and Molecular Biology, 2002, 32, 919-928.	2.7	101
58	The coagulation of insect hemolymph. Cellular and Molecular Life Sciences, 2002, 59, 363-372.	5.4	145
59	Changes in glycosylation during Drosophila development. The influence of ecdysone on hemomucin isoforms. Insect Biochemistry and Molecular Biology, 2001, 31, 189-197.	2.7	20
60	Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. BioEssays, 2001, 23, 344-351.	2.5	285
61	Two distinct reproductive strategies are correlated with an ovarian phenotype in co-existing parthenogenetic strains of a parasitic wasp. Journal of Insect Physiology, 2001, 47, 1189-1195.	2.0	18
62	Evidence for serine protease inhibitor activity in the ovarian calyx fluid of the endoparasitoid Venturia canescens. Journal of Insect Physiology, 2000, 46, 1275-1283.	2.0	49
63	Animal and Plant Members of a Gene Family with Similarity to Alkaloid-Synthesizing Enzymes. Biochemical and Biophysical Research Communications, 2000, 271, 191-196.	2.1	26
64	Is the surface of endoparasitic wasp eggs and larvae covered by a limited coagulation reaction?. Journal of Insect Physiology, 1999, 45, 501-506.	2.0	46
65	A maternal gene mutation correlates with an ovary phenotype in a parthenogenetic wasp population. Insect Biochemistry and Molecular Biology, 1999, 29, 453-460.	2.7	21
66	Insect Glycobiology: A Lectin Multigene Family in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 1999, 261, 923-927.	2.1	49
67	TER94, a Drosophila homolog of the membrane fusion protein CDC48/p97, is accumulated in nonproliferating cells: in the reproductive organs and in the brain of the imago. Insect Biochemistry and Molecular Biology, 1998, 28, 91-98.	2.7	38
68	A protein with protective properties against the cellular defense reactions in insects. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3690-3695.	7.1	90
69	Helix pomatia lectin and annexin V, two molecular probes for insect microparticles: possible involvement in hemolymph coagulation. Journal of Insect Physiology, 1997, 43, 667-674.	2.0	38
70	A polydnavirus-encoded protein of an endoparasitoid wasp is an immune suppressor Journal of General Virology, 1997, 78, 3061-3070.	2.9	110
71	HLH106, a Drosophila transcription factor with similarity to the vertebrate sterol responsive element binding protein Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1195-1199.	7.1	41
72	Multiple alleles encoding a virusâ€ike particle protein in the ichneumonid endoparasitoid <i>Venturia canescens</i> . Insect Molecular Biology, 1996, 5, 239-249.	2.0	36

#	Article	IF	CITATION
73	Helix pomatia Lectin, an Inducer of Drosophila Immune Response, Binds to Hemomucin, a Novel Surface Mucin. Journal of Biological Chemistry, 1996, 271, 12708-12715.	3.4	83
74	<i>CalpA</i> , a <i>Drosophila</i> Calpain Homolog Specifically Expressed in a Small Set of Nerve, Midgut, and Blood Cells. Molecular and Cellular Biology, 1995, 15, 824-834.	2.3	64
75	FKBP39, a Drosophila member of a family of proteins that bind the immunosuppressive drug FK506. Gene, 1995, 156, 247-251.	2.2	21
76	Cloning of a VLP-protein coding gene from a Parasitoid WaspVenturia canescens. Archives of Insect Biochemistry and Physiology, 1994, 26, 137-145.	1.5	19
77	Immune recognition and suppression in insects. Developmental and Comparative Immunology, 1991, 15, S98.	2.3	0
78	Immune defense and suppression in insects. BioEssays, 1991, 13, 343-346.	2.5	21
79	Partial tolerance in \hat{l}^2 -galactosidase-transgenic mice. European Journal of Immunology, 1990, 20, 1311-1316.	2.9	17
80	Protein-specific cytotoxic T lymphocytes. Recognition of transfectants expressing intracellular, membrane-associated or secreted forms of \hat{l}^2 -galactosidase. Immunogenetics, 1989, 30, 296-302.	2.4	57