
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2878577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature, 2002, 418, 85-89.	13.7	307
2	REVIEW: Oxytocin: Crossing the Bridge between Basic Science and Pharmacotherapy. CNS Neuroscience and Therapeutics, 2010, 16, e138-56.	1.9	209
3	α-Melanocyte-Stimulating Hormone Stimulates Oxytocin Release from the Dendrites of Hypothalamic Neurons While Inhibiting Oxytocin Release from Their Terminals in the Neurohypophysis. Journal of Neuroscience, 2003, 23, 10351-10358.	1.7	195
4	Transgenic Expression of Enhanced Green Fluorescent Protein Enables Direct Visualization for Physiological Studies of Vasopressin Neurons and Isolated Nerve Terminals of the Rat. Endocrinology, 2005, 146, 406-413.	1.4	149
5	Interaction of SNX482 with Domains III and IV Inhibits Activation Gating of $\hat{1}\pm 1E$ (CaV2.3) Calcium Channels. Biophysical Journal, 2001, 81, 79-88.	0.2	136
6	An R-Type Ca ²⁺ Current in Neurohypophysial Terminals Preferentially Regulates Oxytocin Secretion. Journal of Neuroscience, 1999, 19, 9235-9241.	1.7	118
7	Rapid as well as Delayed Inhibitory Effects of Glucocorticoid Hormones on Pituitary Adrenocorticotropic Hormone Release Are Mediated by Type II Glucocorticoid Receptors and Require Newly Synthesized Messenger Ribonucleic Acid as well as Protein*. Endocrinology, 1989, 125, 308-313.	1.4	108
8	Regulation of activity-dependent dendritic vasopressin release from rat supraoptic neurones. Journal of Physiology, 2005, 564, 515-522.	1.3	102
9	Osmoregulation of Vasopressin Secretion via Activation of Neurohypophysial Nerve Terminals Glycine Receptors by Glial Taurine. Journal of Neuroscience, 2001, 21, 7110-7116.	1.7	99
10	Vasopressinâ€induced intracellular Ca2+ increase in isolated rat supraoptic cells Journal of Physiology, 1996, 490, 713-727.	1.3	96
11	Role of Q-type Ca2+Channels in Vasopressin Secretion From Neurohypophysial Terminals of the Rat. Journal of Physiology, 1997, 502, 351-363.	1.3	87
12	T-type calcium currents in rat cardiomyocytes during postnatal development: contribution to hormone secretion. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2540-H2548.	1.5	80
13	ATP-evoked increases in [Ca2+]iand peptide release from rat isolated neurohypophysial terminals via a P2X2purinoceptor. Journal of Physiology, 1998, 511, 89-103.	1.3	79
14	Relaxin affects the release of oxytocin and vasopressin from the neurohypophysis. Nature, 1987, 325, 813-816.	13.7	77
15	The calcium channel antagonist ω-conotoxin inhibits secretion from peptidergic nerve terminals. Biochemical and Biophysical Research Communications, 1988, 156, 255-262.	1.0	63
16	L-, N- and T- but neither P- nor Q-type Ca2+Channels Control Vasopressin-Induced Ca2+Influx in Magnocellular Vasopressin Neurones Isolated from the Rat Supraoptic Nucleus. Journal of Physiology, 1997, 503, 253-268.	1.3	61
17	Activation of multiple intracellular transduction signals by vasopressin in vasopressin-sensitive neurones of the rat supraoptic nucleus. Journal of Physiology, 1998, 513, 699-710.	1.3	56
18	Intracellular calcium signalling in magnocellular neurones of the rat supraoptic nucleus: understanding the autoregulatory mechanisms. Experimental Physiology, 2000, 85, 75s-84s.	0.9	56

#	Article	IF	CITATIONS
19	Exaggerated Response of Arginine Vasopressin-Enhanced Green Fluorescent Protein Fusion Gene to Salt Loading without Disturbance of Body Fluid Homeostasis in Rats. Journal of Neuroendocrinology, 2006, 18, 776-785.	1.2	55
20	Ethanol reduces vasopressin release by inhibiting calcium currents in nerve terminals. Brain Research, 1991, 551, 338-341.	1.1	54
21	Isolated neurosecretory nerve endings as a tool for studying the mechanism of stimulus-secretion coupling. Bioscience Reports, 1987, 7, 411-426.	1.1	53
22	Release of neuropeptides does not only occur at nerve terminals. Bioscience Reports, 1988, 8, 471-483.	1.1	51
23	V1a- and V2-type vasopressin receptors mediate vasopressin-induced Ca2+responses in isolated rat supraoptic neurones. Journal of Physiology, 1999, 517, 771-779.	1.3	51
24	Developmental Regulation of a Local Positive Autocontrol of Supraoptic Neurons. Journal of Neuroscience, 2000, 20, 5813-5819.	1.7	51
25	Integrated Channel Plasticity Contributes to Alcohol Tolerance in Neurohypophysial Terminals. Molecular Pharmacology, 2002, 62, 135-142.	1.0	49
26	New Aspects of Firing Pattern Autocontrol in Oxytocin and Vasopressin Neurones. Advances in Experimental Medicine and Biology, 1998, 449, 153-162.	0.8	48
27	ATP induces intracellular calcium increases and actin cytoskeleton disaggregation via P2x receptors. Cell Calcium, 2001, 29, 299-309.	1.1	47
28	Exaggerated Response of a Vasopressin–Enhanced Green Fluorescent Protein Transgene to Nociceptive Stimulation in the Rat. Journal of Neuroscience, 2009, 29, 13182-13189.	1.7	47
29	Intracellular calcium release induced by human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein in human intestinal epithelial cells: a putative mechanism for HIV-1 enteropathy. Cell Calcium, 1995, 18, 9-18.	1.1	46
30	Rise in intracellular calcium via a nongenomic effect of allopregnanolone in fetal rat hypothalamic neurons. Journal of Neuroscience, 1996, 16, 130-136.	1.7	45
31	Modulation/physiology of calcium channel sub-types in neurosecretory terminals. Cell Calcium, 2012, 51, 284-292.	1.1	45
32	Physiological Studies of Stress Responses in the Hypothalamus of Vasopressin-Enhanced Green Fluorescent Protein Transgenic Rat. Journal of Neuroendocrinology, 2007, 19, 285-292.	1.2	43
33	Physiology of Ca2+ signalling in stem cells of different origins and differentiation stages. Cell Calcium, 2016, 59, 57-66.	1.1	40
34	Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals. Neuroscience, 1994, 58, 423-431.	1.1	39
35	Possible role during exocytosis of a ca2+-activated channel in neurohypophysial granules. Neuron, 1992, 8, 335-342.	3.8	38
36	Neurosteroid regulation of oxytocin and vasopressin release from the rat supraoptic nucleus. Journal of Physiology, 2003, 548, 233-244.	1.3	38

#	Article	IF	CITATIONS
37	Release of vasopressin from isolated permeabilized neurosecretory nerve terminals is blocked by the light chain of botulinum A toxin. Neuroscience, 1990, 39, 711-715.	1.1	37
38	Calcium channel subtypes responsible for voltage-gated intracellular calcium elevations in embryonic rat motoneurons. Neuroscience, 1998, 87, 719-730.	1.1	35
39	Segregation of calcium signalling mechanisms in magnocellular neurones and terminals. Cell Calcium, 2012, 51, 293-299.	1.1	35
40	The light chain of tetanus toxin inhibits calcium-dependent vasopressin release from permeabilized nerve endings. Neuroscience, 1992, 46, 489-493.	1.1	34
41	Rapid inhibition of Ca2+ influx by neurosteroids in murine embryonic sensory neurones. Cell Calcium, 2006, 40, 383-391.	1.1	34
42	Chapter 19 The active role of dendrites in the regulation of magnocellular neurosecretory cell behavior. Progress in Brain Research, 2002, 139, 247-255.	0.9	33
43	Intracellular Calcium Increase and Somatodendritic Vasopressin Release by Vasopressin Receptor Agonists in the Rat Supraoptic Nucleus: Involvement of Multiple Intracellular Transduction Signals. Journal of Neuroendocrinology, 2004, 16, 221-236.	1.2	33
44	Acidâ€sensing ion channels in rat hypothalamic vasopressin neurons of the supraoptic nucleus. Journal of Physiology, 2010, 588, 2147-2162.	1.3	33
45	Hypothalamic vasopressin response to stress and various physiological stimuli: Visualization in transgenic animal models. Hormones and Behavior, 2011, 59, 221-226.	1.0	33
46	Response of Arginine Vasopressinâ€Enhanced Green Fluorescent Protein Fusion Gene in the Hypothalamus of Adjuvantâ€Induced Arthritic Rats. Journal of Neuroendocrinology, 2009, 21, 183-190.	1.2	32
47	Plasticity of Calcium Signaling Cascades in Human Embryonic Stem Cell-Derived Neural Precursors. Stem Cells and Development, 2013, 22, 1506-1521.	1.1	32
48	u-Opioid Receptor Preferentially Inhibits Oxytocin Release from Neurohypophysial Terminals by Blocking R-type Ca2+ Channels. Journal of Neuroendocrinology, 2005, 17, 583-590.	1.2	31
49	Intracellular Ca2+ regulation in rat motoneurons during development. Cell Calcium, 2006, 39, 237-246.	1.1	29
50	Chronic Osmotic Stimuli Increase Salusinâ€Î²â€Like Immunoreactivity in the Rat Hypothalamoâ€Neurohypophyseal System: Possible Involvement of Salusinâ€Î² on [Ca ²⁺] _i Increase and Neurohypophyseal Hormone Release from the Axon Terminals, Journal of Neuroendocrinology, 2008, 20, 207-219.	1.2	29
51	Characterization of Ca ²⁺ Signalling in Postnatal Mouse Retinal Ganglion Cells: Involvement of OPA1 in Ca ²⁺ Clearance. Ophthalmic Genetics, 2010, 31, 53-65.	0.5	29
52	Guanosine 3′:5′cyclic monophosphate and activators of guanylate cyclase inhibit secretagogue-induced corticotropin release by rat anterior pituitary cells. Biochemical and Biophysical Research Communications, 1989, 158, 824-830.	1.0	28
53	Robust Up-Regulation of Nuclear Red Fluorescent-Tagged Fos Marks Neuronal Activation in Green Fluorescent Vasopressin Neurons after Osmotic Stimulation in a Double-Transgenic Rat. Endocrinology, 2009, 150, 5633-5638.	1.4	28
54	Ca2+ homeostasis, Ca2+ signalling and somatodendritic vasopressin release in adult rat supraoptic nucleus neurones. Cell Calcium, 2010, 48, 324-332.	1.1	28

#	Article	IF	CITATIONS
55	Regulation of Ca2+Homeostasis by Atypical Na+Currents in Cultured Human Coronary Myocytes. Circulation Research, 1999, 85, 606-613.	2.0	27
56	Adenosine inhibition via A 1 receptor of Nâ€ŧype Ca 2+ current and peptide release from isolated neurohypophysial terminals of the rat. Journal of Physiology, 2002, 540, 791-802.	1.3	26
57	Ca2+ clearance mechanisms in neurohypophysial terminals of the rat. Cell Calcium, 2005, 37, 45-56.	1.1	26
58	Evidence for endogenous agmatine in hypothalamo-neurohypophysial tract and its modulation on vasopressin release and Ca2+ channels. Brain Research, 2002, 932, 25-36.	1.1	25
59	µ-Opioid Receptor Modulates Peptide Release From Rat Neurohypophysial Terminals By Inhibiting Ca2+ Influx. Journal of Neuroendocrinology, 2003, 15, 888-894.	1.2	25
60	Diurnal changes of arginine vasopressin-enhanced green fluorescent protein fusion transgene expression in the rat suprachiasmatic nucleus. Peptides, 2010, 31, 2089-2093.	1.2	25
61	Full-length transient receptor potential vanilloid 1 channels mediate calcium signals and possibly contribute to osmoreception in vasopressin neurones in the rat supraoptic nucleus. Cell Calcium, 2015, 57, 25-37.	1.1	25
62	Evidence for Distinct Glucocorticoid and Guanine 3′,5′-Monophosphate-Effected Inhibition of Stimulated Adrenocorticotropin Releasein Vitro*. Endocrinology, 1990, 126, 1355-1360.	1.4	23
63	Characterization of Spontaneous and N-Methyl-D-Aspartate-Induced Calcium Rise in Rat Cultured Hypothalamic Neurons. Neuroendocrinology, 1995, 61, 243-255.	1.2	23
64	Rhythmic activities of hypothalamic magnocellular neurons: Autocontrol mechanisms. Biology of the Cell, 1997, 89, 555-560.	0.7	23
65	Tolerance to Acute Ethanol Inhibition of Peptide Hormone Release in the Isolated Neurohypophysis. Alcoholism: Clinical and Experimental Research, 2000, 24, 1077-1083.	1.4	23
66	Structural difference between heteromeric somatic and homomeric axonal glycine receptors in the hypothalamo-neurohypophysial system. Neuroscience, 2005, 135, 475-483.	1.1	23
67	Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons. Stem Cell Research and Therapy, 2013, 4, 69.	2.4	23
68	Embryonic rat motoneurons express a functional P-type voltage-dependent calcium channel. International Journal of Developmental Neuroscience, 1995, 13, 429-436.	0.7	22
69	Specific expression of an oxytocin-enhanced cyan fluorescent protein fusion transgene in the rat hypothalamus and posterior pituitary. Journal of Endocrinology, 2010, 204, 275-285.	1.2	21
70	Are opioid peptides co-localized with vasopressin or oxytocin in the neural lobe of the rat?. Cell and Tissue Research, 1986, 246, 177-82.	1.5	19
71	Neurosteroids are excitatory in supraoptic neurons but inhibitory in the peripheral nervous system: it is all about oxytocin and progesterone receptors. Progress in Brain Research, 2008, 170, 177-192.	0.9	19
72	NGF-induced hyperexcitability causes spontaneous fluctuations of intracellular Ca2+ in rat nociceptive dorsal root ganglion neurons. Cell Calcium, 2009, 45, 209-215.	1.1	19

#	Article	IF	CITATIONS
73	Induction of the arginine vasopressin-enhanced green fluorescent protein fusion transgene in the rat locus coeruleus. Stress, 2010, 13, 281-292.	0.8	19
74	Impaired Somatodendritic Responses to Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) of Supraoptic Neurones in PACAP type I -Receptor Deficient Mice. Journal of Neuroendocrinology, 2003, 15, 871-881.	1.2	18
75	Specific Expression of Optically Active Reporter Gene in Arginine Vasopressinâ€5ecreting Neurosecretory Cells in the Hypothalamicâ€Neurohypophyseal System. Journal of Neuroendocrinology, 2008, 20, 660-664.	1.2	17
76	Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Research, 2016, 16, 622-634.	0.3	17
77	Ca 2+ â€regulated, neurosecretory granule channel involved in release from neurohypophysial terminals. Journal of Physiology, 2002, 539, 409-418.	1.3	16
78	Vasopressin and oxytocin in sensory neurones: expression, exocytotic release and regulation by lactation. Scientific Reports, 2018, 8, 13084.	1.6	16
79	Chloride and magnesium dependence of vasopressin release from rat permeabilized neurohypophysial nerve endings. Neuroscience Letters, 1989, 106, 305-309.	1.0	15
80	Cationic currents on identified rat gonadotroph cells maintained in primary culture. Neurochemistry International, 1989, 15, 265-275.	1.9	15
81	Intracellular calcium and hormone release from nerve endings of the neurohypophysis in the presence of opioid agonists and antagonists. Experimental Brain Research, 1992, 90, 539-45.	0.7	15
82	Trimetazidine modulates AMPA/kainate receptors in rat vestibular ganglion neurons. European Journal of Pharmacology, 2007, 574, 8-14.	1.7	14
83	Molecular Characterization and Biological Function of Neuroendocrine Regulatory Peptide-3 in the Rat. Endocrinology, 2012, 153, 1377-1386.	1.4	14
84	The peripheral chimerism of bone marrow–derived stem cells after transplantation: regeneration of gastrointestinal tissues in lethally irradiated mice. Journal of Cellular and Molecular Medicine, 2014, 18, 832-843.	1.6	14
85	SNXâ€482: A Novel Class E Calcium Channel Antagonist from Tarantula Venom. CNS Neuroscience & Therapeutics, 2000, 6, 153-173.	4.0	12
86	Differential modulation of Nâ€type calcium channels by µâ€opioid receptors in oxytocinergic versus vasopressinergic neurohypophysial terminals. Journal of Cellular Physiology, 2010, 225, 276-288.	2.0	12
87	Bio-Fabrication of Human Amniotic Membrane Zinc Oxide Nanoparticles and the Wet/Dry HAM Dressing Membrane for Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 695710.	2.0	11
88	Alteration of Sarcoplasmic Reticulum <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mtext>Ca in Skeletal Muscle from Calpain 3-Deficient Mice. International Journal of Cell Biology, 2009, 2009, 1-12.</mml:mtext></mml:mrow></mml:msup></mml:mrow></mml:math 	<td>extaq/mml:mro</td>	extaq/mml:mro
89	Getting it right before transplantation: example of a stem cell model with regenerative potential for the CNS. Frontiers in Cell and Developmental Biology, 2014, 2, 36.	1.8	10
90	lonizing radiation increases primary cilia incidence and induces multiciliation in C2C12 myoblasts. Cell Biology International 2015, 39, 943, 953	1.4	9

Biology International, 2015, 39, 943-953.

#	Article	IF	CITATIONS
91	Transplantation of Neural Precursors Derived from Induced Pluripotent Cells Preserve Perineuronal Nets and Stimulate Neural Plasticity in ALS Rats. International Journal of Molecular Sciences, 2020, 21, 9593.	1.8	9
92	Physiology of spontaneous [Ca2+]i oscillations in the isolated vasopressin and oxytocin neurones of the rat supraoptic nucleus. Cell Calcium, 2016, 59, 280-288.	1.1	8
93	Rhythmic activities of hypothalamic magnocellular neurons: Autocontrol mechanisms. , 1997, 89, 555.		8
94	Chronic Treatment with NGF Induces Spontaneous Fluctuations of Intracellular Ca2+ in Icilin-Sensitive Dorsal Root Ganglion Neurons of the Rat. Journal of Veterinary Medical Science, 2010, 72, 1531-1538.	0.3	7
95	Pathological human astroglia in Alzheimer's disease: opening new horizons with stem cell technology. Future Neurology, 2018, 13, 87-99.	0.9	7
96	Persistent Na+ influx drives L-type channel resting Ca2+ entry in rat melanotrophs. Cell Calcium, 2019, 79, 11-19.	1.1	7
97	Vasopressin(4-9) fragment activates V1a-type vasopressin receptor in rat supraoptic neurones. NeuroReport, 1999, 10, 1735-1739.	0.6	6
98	Human Multipotent Mesenchymal Stromal Cells in the Treatment of Postoperative Temporal Bone Defect: An Animal Model. Cell Transplantation, 2016, 25, 1405-1414.	1.2	6
99	G-Proteins mediate inhibition and activation of Ca2+-induced exocytosis from SLO-permeabilized peptidergic nerve endings. Bioscience Reports, 1992, 12, 463-469.	1.1	5
100	Synchronous development of spontaneous and evoked calcium-dependent properties in hypothalamic neurons. Developmental Brain Research, 1994, 79, 85-92.	2.1	5
101	Pathophysiological roles of galanin-like peptide in the hypothalamus and posterior pituitary gland. Pathophysiology, 2010, 17, 135-140.	1.0	5
102	Neuroendocrine signalling: Natural variations on a Ca2+ theme. Cell Calcium, 2012, 51, 207-211.	1.1	5
103	Isolated Neurohypophysial Nerve Endings, a Promising Tool to Study the Mechanism of Stimulus-Secretion Coupling. , 1988, , 147-155.		5
104	Vasopressin-induced intracellular Ca2+ concentration responses in non-neuronal cells of the rat dorsal root ganglion. Brain Research, 2012, 1483, 1-12.	1.1	4
105	Sodium-calcium exchanger and R-type Ca2+ channels mediate spontaneous [Ca2+]i oscillations in magnocellular neurones of the rat supraoptic nucleus. Cell Calcium, 2016, 59, 289-298.	1.1	4
106	Calcium signalling in stem cells: Molecular physiology and multiple roles. Cell Calcium, 2016, 59, 55-56.	1.1	4
107	Possible Role for Neurosecretory Granule Channel That Resembles Gap Junctions. Annals of the New York Academy of Sciences, 1991, 635, 480-482.	1.8	3
108	Spontaneous glutamate release controls NT-3-dependent development of hippocampal calbindin-D28k phenotype through activation of sodium channels ex vivo. European Journal of Neuroscience, 2007, 25, 2629-2639.	1.2	3

GOVINDIN DAYANITHI

#	Article	IF	CITATIONS
109	The toxic effect of cytostatics on primary cilia frequency and multiciliation. Journal of Cellular and Molecular Medicine, 2019, 23, 5728-5736.	1.6	3
110	When day meets night: Subsiding calcium signalling translates daylight into new neurones. Cell Calcium, 2021, 95, 102385.	1.1	2
111	Therapeutic Efficacy of Bacteriophages. , 0, , .		2
112	A Novel Prototype Biosensor Array Electrode System for Detecting the Bacterial Pathogen Salmonella typhimurium. Biosensors, 2022, 12, 389.	2.3	2
113	Galactosylceramide and transmembrane signalling in enterocytes: Calcium response induced by HIV-1 surface-envelope glycoprotein gp120. Journal of Computer - Aided Molecular Design, 1996, 5, 181-191.	1.0	1
114	Arachidonic acid regulation of vasopressin release and intracellular Ca 2+ in neurohypophysial nerve endings. Brain Research, 1996, 742, 129-140.	1.1	1
115	Adenosine inhibition via A1 receptor of N-type Ca2+ current and peptide release from isolated neurohypophysial terminals of the rat. , 2002, 540, 791.		1
116	Effects of adrenalectomy and acute inflammatory stress on vasopressin-enhanced green fluorescent protein expression in the hypothalamus of transgenic rats. Frontiers in Neuroendocrinology, 2006, 27, 45-46.	2.5	0
117	ID: 1022 Acellular muscle scaffolds: Histological and biochemical evaluation. Biomedical Research and Therapy, 2017, 4, 97.	0.3	0
118	Neurosecretion: Hypothalamic Somata versus Neurohypophysial Terminals. Masterclass in Neuroendocrinology, 2020, , 17-42.	0.1	0