
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2878496/publications.pdf Version: 2024-02-01

7HIEFNOLUU

#	Article	IF	CITATIONS
1	Novel WO ₃ /Sb ₂ S ₃ Heterojunction Photocatalyst Based on WO ₃ of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 9684-9691.	8.0	252
2	Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2017, 201, 84-91.	20.2	193
3	Oxygen vacancies engineering in TiO2 homojunction/ZnFe-LDH for enhanced photoelectrochemical water oxidation. Chemical Engineering Journal, 2020, 395, 125101.	12.7	173
4	Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts. Applied Surface Science, 2020, 515, 146095.	6.1	165
5	Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method. Applied Catalysis B: Environmental, 2020, 265, 118580.	20.2	162
6	Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts. Applied Catalysis B: Environmental, 2020, 262, 118279.	20.2	147
7	Enhancing light harvesting and charge separation of Cu ₂ O photocathodes with spatially separated noble-metal cocatalysts towards highly efficient water splitting. Journal of Materials Chemistry A, 2018, 6, 20393-20401.	10.3	141
8	Preparation of ZnO porous thin films by sol–gel method using PEG template. Materials Letters, 2005, 59, 3620-3625.	2.6	137
9	An effective strategy of constructing a multi-junction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO ₃ . Journal of Materials Chemistry A, 2020, 8, 6256-6267.	10.3	134
10	An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx cocatalyst for efficient photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2020, 277, 119197.	20.2	131
11	High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. Applied Catalysis B: Environmental, 2015, 163, 179-188.	20.2	128
12	Defective ultra-thin two-dimensional g-C3N4 photocatalyst for enhanced photocatalytic H2 evolution activity. Journal of Colloid and Interface Science, 2021, 581, 159-166.	9.4	125
13	Dualâ€Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting. ChemSusChem, 2018, 11, 3438-3448.	6.8	122
14	Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells. Renewable Energy, 2011, 36, 1177-1181.	8.9	121
15	A ZnO/ZnFe ₂ O ₄ uniform core–shell heterojunction with a tubular structure modified by NiOOH for efficient photoelectrochemical water splitting. Dalton Transactions, 2018, 47, 12181-12187.	3.3	115
16	1D/0D WO3/CdS heterojunction photoanodes modified with dual co-catalysts for efficient photoelectrochemical water splitting. Journal of Alloys and Compounds, 2019, 790, 493-501.	5.5	115
17	Hybrid 0D/2D edamame shaped ZnIn2S4 photoanode modified by Co-Pi and Pt for charge management towards efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2019, 244, 188-196.	20.2	102
18	Enhanced photoelectrochemical water splitting performance of α-Fe2O3 nanostructures modified with Sb2S3 and cobalt phosphate. Journal of Alloys and Compounds, 2018, 742, 918-927.	5.5	101

ZHIFENG LIU

#	Article	IF	CITATIONS
19	Decorating Cu2O photocathode with noble-metal-free Al and NiS cocatalysts for efficient photoelectrochemical water splitting by light harvesting management and charge separation design. Chemical Engineering Journal, 2020, 381, 122655.	12.7	100
20	1D ZnO/BiVO ₄ heterojunction photoanodes for efficient photoelectrochemical water splitting. Dalton Transactions, 2016, 45, 11346-11352.	3.3	90
21	Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers. Applied Surface Science, 2009, 255, 6415-6420.	6.1	86
22	Efficient photoelectrochemical water splitting over Co3O4 and Co3O4/Ag composite structure. Applied Catalysis B: Environmental, 2017, 202, 454-459.	20.2	86
23	Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system. Nano Energy, 2021, 79, 105485.	16.0	86
24	Synergistic enhancement of charge management and surface reaction kinetics by spatially separated cocatalysts and p-n heterojunctions in Pt/CuWO4/Co3O4 photoanode. Chemical Engineering Journal, 2019, 374, 554-563.	12.7	82
25	FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelctrochemical performance. Applied Catalysis B: Environmental, 2020, 260, 118213.	20.2	82
26	AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2015, 179, 61-68.	20.2	81
27	Novel strategy for efficient water splitting through pyro-electric and pyro-photo-electric catalysis of BaTiO3 by using thermal resource and solar energy. Applied Catalysis B: Environmental, 2021, 284, 119686.	20.2	81
28	Enhanced Photoelectrochemical Water Splitting of Photoelectrode Simultaneous Decorated with Cocatalysts Based on Spatial Charge Separation and Transfer. ACS Sustainable Chemistry and Engineering, 2018, 6, 3565-3574.	6.7	80
29	Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting. Chinese Journal of Catalysis, 2020, 41, 1884-1893.	14.0	79
30	Dendritic TiO ₂ /ln ₂ S ₃ /AgInS ₂ Trilaminar Core–Shell Branched Nanoarrays and the Enhanced Activity for Photoelectrochemical Water Splitting. Small, 2014, 10, 3153-3161.	10.0	76
31	Novel framework g-C 3 N 4 film as efficient photoanode for photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2017, 209, 657-662.	20.2	76
32	Improved photoelectrochemical response of CuWO4/BiOI p-n heterojunction embedded with plasmonic Ag nanoparticles. Chemical Engineering Journal, 2019, 370, 218-227.	12.7	72
33	Quantum dots and plasmonic Ag decorated WO3 nanorod photoanodes with enhanced photoelectrochemical performances. International Journal of Hydrogen Energy, 2016, 41, 20529-20535.	7.1	71
34	3D Branched Caâ€Fe ₂ O ₃ /Fe ₂ O ₃ Decorated with Pt and Coâ€Pi: Improved Chargeâ€Separation Dynamics and Photoelectrochemical Performance. ChemSusChem, 2019, 12, 3286-3295.	6.8	71
35	CulnS2/Sb2S3 heterostructure modified with noble metal co-catalyst for efficient photoelectrochemical water splitting. Journal of Alloys and Compounds, 2019, 795, 319-326.	5.5	69
36	The collaborative mechanism of surface S-vacancies and piezoelectric polarization for boosting CdS photoelectrochemical performance. Chemical Engineering Journal, 2022, 433, 133226.	12.7	67

#	Article	IF	CITATIONS
37	Photoelectrochemical Water Splitting of CuInS ₂ Photocathode Collaborative Modified with Separated Catalysts Based on Efficient Photogenerated Electron–Hole Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 10289-10294.	6.7	60
38	Exposing the photocorrosion mechanism and control strategies of a CuO photocathode. Inorganic Chemistry Frontiers, 2019, 6, 2488-2499.	6.0	59
39	PEC electrode of ZnO nanorods sensitized by CdS with different size and its photoelectric properties. International Journal of Hydrogen Energy, 2013, 38, 10226-10234.	7.1	58
40	Enhancement in the charge transport and photocorrosion stability of CuO photocathode: The synergistic effect of spatially separated dual-cocatalysts and p-n heterojunction. Chemical Engineering Journal, 2020, 394, 124907.	12.7	58
41	Effects of substrates and seed layers on solution growing ZnO nanorods. Journal of Solid State Electrochemistry, 2010, 14, 957-963.	2.5	57
42	The synergistic effect with S-vacancies and built-in electric field on a TiO ₂ /MoS ₂ photoanode for enhanced photoelectrochemical performance. Sustainable Energy and Fuels, 2021, 5, 509-517.	4.9	57
43	High-Efficiency AgInS ₂ -Modified ZnO Nanotube Array Photoelectrodes for All-Solid-State Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17119-17125.	8.0	55
44	Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting. Applied Surface Science, 2018, 440, 1101-1106.	6.1	55
45	Efficient photoelectrochemical water splitting of CaBi6O10 decorated with Cu2O and NiOOH for improved photogenerated carriers. International Journal of Hydrogen Energy, 2018, 43, 13276-13283.	7.1	51
46	0D CoP cocatalyst/ 2D g ₃ N ₄ nanosheets: An efficient photocatalyst for promoting photocatalytic hydrogen evolution. Journal of the American Ceramic Society, 2019, 102, 5484-5493.	3.8	51
47	Mechanism and characteristics of porous ZnO films by sol–gel method with PEG template. Materials Letters, 2008, 62, 1190-1193.	2.6	50
48	Enhanced photoelectrochemical performance of 2D core-shell WO3/CuWO4 uniform heterojunction via in situ synthesis and modification of Co-Pi co-catalyst. International Journal of Hydrogen Energy, 2020, 45, 16550-16559.	7.1	50
49	Piezoelectric polarization assisted WO3/CdS photoanode improved carrier separation efficiency via CdS phase regulation. International Journal of Hydrogen Energy, 2021, 46, 36113-36123.	7.1	50
50	Synthesis and control strategies of nanomaterials for photoelectrochemical water splitting. Dalton Transactions, 2021, 50, 1983-1989.	3.3	49
51	Photoelectrochemical properties and growth mechanism of varied ZnO nanostructures. New Journal of Chemistry, 2017, 41, 7947-7952.	2.8	48
52	1D WO 3 Nanorods/2D WO 3â^' x Nanoflakes Homojunction Structure for Enhanced Charge Separation and Transfer towards Efficient Photoelectrochemical Performance. ChemSusChem, 2019, 12, 5282-5290.	6.8	47
53	CoNiO ₂ as a novel water oxidation cocatalyst to enhance PEC water splitting performance of BiVO ₄ . Chemical Communications, 2020, 56, 9158-9161.	4.1	46
54	Hexagonal phase/cubic phase homogeneous ZnIn2S4 n-n junction photoanode for efficient photoelectrochemical water splitting. Journal of Alloys and Compounds, 2020, 830, 154639.	5.5	45

#	Article	IF	CITATIONS
55	ZnO photoelectrode simultaneously modified with Cu ₂ O and Co-Pi based on broader light absorption and efficiently photogenerated carrier separation. Inorganic Chemistry Frontiers, 2018, 5, 2571-2578.	6.0	43
56	Promising Three-Dimensional Flowerlike CuWO ₄ Photoanode Modified with CdS and FeOOH for Efficient Photoelectrochemical Water Splitting. Industrial & Engineering Chemistry Research, 2018, 57, 6210-6217.	3.7	42
57	Accelerating the charge separation of ZnFe2O4 nanorods by Cu-Sn ions gradient doping for efficient photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2019, 552, 111-121.	9.4	41
58	Trilaminar ZnO/ZnS/Sb2S3 nanotube arrays for efficient inorganic–organic hybrid solar cells. RSC Advances, 2014, 4, 23807.	3.6	40
59	Optimization and Modulation Strategies of Zinc Oxide-based Photoanodes for Highly Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 1004-1013.	5.1	38
60	Efficient visible light photocatalytic activity of p–n junction CuO/TiO ₂ loaded on natural zeolite. RSC Advances, 2015, 5, 64495-64502.	3.6	37
61	Copper phosphide decorated g-C3N4 catalysts for highly efficient photocatalytic H2 evolution. Journal of Colloid and Interface Science, 2022, 610, 126-135.	9.4	37
62	Synthesis of metal sulfide sensitized zinc oxide-based core/shell/shell nanorods and their photoelectrochemical properties. Journal of Power Sources, 2014, 268, 388-396.	7.8	36
63	Co-Modification with Cost-Effective Nickel Oxides and Nickel Sulfides on CuInS ₂ Nanosheets Photocathode for Enhanced Photoelectrochemical Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 512-519.	6.7	35
64	Efficient Indium Sulfide Photoelectrode with Crystal Phase and Morphology Control for High-Performance Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 12328-12336.	6.7	34
65	The effect of SiO2 on TiO2-SiO2 composite film for self-cleaning application. Surfaces and Interfaces, 2019, 16, 194-198.	3.0	34
66	Fabrication of ZnO/CuS core/shell nanoarrays for inorganic–organic heterojunction solar cells. Materials Chemistry and Physics, 2013, 141, 804-809.	4.0	31
67	Promising CoFe-NiOOH Ternary Polymetallic Cocatalyst for BiVO ₄ -Based Photoanodes in Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 3842-3850.	5.1	31
68	Preparation and enhanced photoelectrochemical performance of selenite-sensitized zinc oxide core/shell composite structure. Journal of Materials Chemistry A, 2015, 3, 4239-4247.	10.3	30
69	Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers. Journal of Power Sources, 2015, 285, 185-194.	7.8	30
70	Multifarious function layers photoanode based on g-C 3 N 4 for photoelectrochemical water splitting. Chinese Journal of Catalysis, 2018, 39, 1527-1533.	14.0	30
71	Promising cobalt oxide and cobalt oxide/silver photocathodes for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2017, 161, 46-51.	6.2	29
72	Jalpaite Ag3CuS2: a novel promising ternary sulfide absorber material for solar cells. Chemical Communications, 2015, 51, 2597-2600.	4.1	28

ZHIFENG LIU

#	Article	IF	CITATIONS
73	Hierarchical graphene/CdS/Ag2S sandwiched nanofilms for photoelectrochemical water splitting. Electrochimica Acta, 2015, 176, 334-343.	5.2	28
74	CuSbS2: a promising semiconductor photo-absorber material for quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 16615-16620.	2.8	28
75	Preparation of porous ZnO plate crystal thin films by electrochemical deposition using PS template assistant. Materials Letters, 2006, 60, 810-814.	2.6	26
76	Highly Sensitive Band Alignment of the Graphene/MoSi ₂ N ₄ Heterojunction via an External Electric Field. ACS Applied Electronic Materials, 2022, 4, 2897-2905.	4.3	25
77	Fabrication of Cu2O/TiO2 nanotube arrays with enhanced visible-light photoelectrocatalytic activity. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	24
78	Cooperation effect of heterojunction and co-catalyst in BiVO ₄ /Bi ₂ S ₃ /NiOOH photoanode for improving photoelectrochemical performances. New Journal of Chemistry, 2018, 42, 19415-19422.	2.8	24
79	Zinc ferrite-based p–n homojunction with multi-effect for efficient photoelectrochemical water splitting. Chemical Communications, 2020, 56, 13205-13208.	4.1	24
80	Effects of seed layers on controlling of the morphology of ZnO nanostructures and superhydrophobicity of ZnO nanostructure/stearic acid composite films. Materials Chemistry and Physics, 2016, 183, 306-314.	4.0	23
81	Construction and photoelectrocatalytic performance of TiO2/BiVO4 heterojunction modified with cobalt phosphate. Journal of Alloys and Compounds, 2020, 821, 153225.	5.5	23
82	CaBi ₆ O ₁₀ : a novel promising photoanode for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2017, 5, 8545-8554.	10.3	22
83	Construction homojunction and co-catalyst in ZnIn2S4 photoelectrode by Co ion doping for efficient photoelectrochemical water splitting. Journal of Alloys and Compounds, 2021, 867, 159028.	5.5	22
84	Cu2O/CuO heterojunction formed by thermal oxidation and decorated with Pt co-catalyst as an efficient photocathode for photoelectrochemical water splitting. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	22
85	1D ZnFe2O4 nanorods coupled with plasmonic Ag, Ag2S nanoparticles and Co-Pi cocatalysts for efficient photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 19841-19854.	7.1	21
86	Multifunctional WO ₃ /NiCo ₂ O ₄ heterojunction with extensively exposed bimetallic Ni/Co redox reaction sites for efficient photoelectrochemical water splitting. ChemCatChem, 2021, 13, 271-280.	3.7	21
87	Three-dimensional flower-like hybrid BiOI–zeolite composites with highly efficient adsorption and visible light photocatalytic activity. RSC Advances, 2014, 4, 45540-45547.	3.6	20
88	A high-efficiency and stable cupric oxide photocathode coupled with Al surface plasmon resonance and Al ₂ O ₃ self-passivation. Chemical Communications, 2019, 55, 15093-15096.	4.1	20
89	A promising p-type Co–ZnFe ₂ O ₄ nanorod film as a photocathode for photoelectrochemical water splitting. Chemical Communications, 2020, 56, 5279-5282.	4.1	20
90	Co/Cu-modified NiO film grown on nickel foam as a highly active and stable electrocatalyst for overall water splitting. Dalton Transactions, 2020, 49, 1776-1784.	3.3	20

#	Article	IF	CITATIONS
91	Cobalt-phosphate modified Fe-Zn0.2Cd0.8S/CuSbS2 heterojunction photoanode with multiple synergistic effect for enhancing photoelectrochemical water splitting. Applied Surface Science, 2019, 476, 716-723.	6.1	19
92	The p-n heterojunction of BiVO4/Cu2O was decorated by plasma Ag NPs for efficient photoelectrochemical degradation of Rhodamine B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127834.	4.7	19
93	Synthesis of ZnO/Cu2S core/shell nanorods and their enhanced photoelectric performance. Journal of Sol-Gel Science and Technology, 2014, 72, 92-99.	2.4	18
94	Zn1â^'xCdxS nanowall photoanode prepared via seed layer epitaxial growth method and modified by dual co-catalyst for photoelectrochemical water splitting. Applied Surface Science, 2019, 467-468, 65-74.	6.1	18
95	Simultaneous Modulation of Interface Reinforcement, Crystallization, Antiâ€Reflection, and Carrier Transport in Sb Gradientâ€Doped SnO ₂ /Sb ₂ S ₃ Heterostructure for Efficient Photoelectrochemical Cell. Small, 2022, 18, e2105026.	10.0	18
96	Preparation and activity evaluation of TiO2/Cu-TiO2 composite catalysts. Journal of Sol-Gel Science and Technology, 2015, 73, 322-331.	2.4	17
97	A ZnO@CuO core–shell heterojunction photoanode modified with ZnFe-LDH for efficient and stable photoelectrochemical performance. Dalton Transactions, 2021, 50, 4593-4603.	3.3	17
98	Pyro-photo-electric catalysis in Bi2WO6 nanostructures for efficient degradation of dyes under thermal-assisted visible light irradiation. Journal of Alloys and Compounds, 2022, 892, 162203.	5.5	17
99	High-efficiency p–n junction oxide photoelectrodes for photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2016, 18, 31230-31237.	2.8	16
100	Hydrothermal synthesis of a rutile/anatase TiO2mixed crystal from potassium titanyl oxalate: crystal structure and formation mechanism. CrystEngComm, 2018, 20, 3363-3369.	2.6	16
101	Trilaminar graphene/tremella-like CuInS2/graphene oxide nanofilms and the enhanced activity for photoelectrochemical water splitting. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	14
102	A promising ternary sulfide bidirectional p–n heterojunction for unassisted tandem photoelectrochemical cells. Chemical Communications, 2021, 57, 4910-4913.	4.1	13
103	A Dumbbell CaBi ₂ O ₄ Photoelectrode for Photoelectrochemical Water Splitting. ChemCatChem, 2017, 9, 4029-4034.	3.7	12
104	2D tremella-like Co6Al2CO3(OH)16•4H2O in-situ growing on 1D rod-shape ZnFe2O4 to accelerate the surface reaction kinetics for photoelectrochemical water splitting. Journal of Alloys and Compounds, 2020, 823, 153714.	5.5	12
105	An Unassisted Tandem Photoelectrochemical Cell Based on p- and n-Cu2O Photoelectrodes. Catalysis Letters, 2021, 151, 1976-1983.	2.6	12
106	The synergistic role of the photosensitivity effect and extended space charge region in an inorganic–organic WO ₃ /PANI photoanode for efficient PEC water splitting. Sustainable Energy and Fuels, 2021, 5, 2893-2906.	4.9	12
107	Assembly of ordered ZnO porous thin films by cooperative assembly method using polystyrene spheres and ultrafine ZnO particles. Materials Research Bulletin, 2006, 41, 119-127.	5.2	11
108	Flowerâ€like Cu ₂ In ₂ ZnS ₅ Nanosheets: A Novel Promising Photoelectrode for Water Splitting. ChemCatChem, 2016, 8, 1288-1292.	3.7	11

#	Article	IF	CITATIONS
109	Efficient WO ₃ Photoanode Modified by Pt Layer and Plasmonic Ag for Enhanced Charge Separation and Transfer To Promote Photoelectrochemical Performances. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	11
110	Photoelectrochemical performance of W-doped BiVO4 photoanode. Journal of Materials Science: Materials in Electronics, 2019, 30, 21425-21434.	2.2	11
111	First-Principles Calculations of Graphene-Coated CH ₃ NH ₃ PbI ₃ toward Stable Perovskite Solar Cells in Humid Environments. ACS Applied Nano Materials, 2020, 3, 7704-7712.	5.0	11
112	2D elongated polyhedral-like YVO ₄ films: a novel photoanode for photoelectrochemical water splitting. Chemical Communications, 2019, 55, 10468-10471.	4.1	10
113	Thermal Excitation Polarized Field Drives Photoelectric Catalysis for Dye Degradation in a BaTiO ₃ /CdS Heterojunction through Integration of Solar and Thermal Energy. ChemPhotoChem, 2021, 5, 1106-1118.	3.0	10
114	Hierarchical porous TiO ₂ templated from natural Artemia cyst shells for photocatalysis applications. RSC Advances, 2014, 4, 20393-20397.	3.6	9
115	Zeolite-based CuO nanotubes catalysts: investigating the characterization, mechanism, and decolouration process of methylene blue. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	9
116	ZnO Hemisphere Pits Nanowire/CdS Photoelectrode for High-Efficiency Photoelectrochemical Water Splitting. Journal of Electronic Materials, 2017, 46, 1532-1538.	2.2	9
117	Fabrication and photoelectrochemical properties of a promising flaky-structured NaInS2 photoelectrode. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 627-632.	3.9	9
118	Plasmonic Ag nanoparticles and p-type CuO-modified ZnO nanorods for efficient photoelectrochemical water splitting. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	9
119	Doping regulating spontaneous polarization and pyroelectric effects to synergistically promote the water splitting efficiency of niobate (KxNa1-xNbO3) pyro-photo-electrical coupling system. Applied Surface Science, 2022, 592, 153255.	6.1	9
120	Preparation of Assembled Carbon Soot Films and Hydrophobic Properties. Materials, 2018, 11, 2318.	2.9	8
121	Optimized the Carrier Transport Path and Separation Efficiency of 2D/2D Heterojunction in Photoelectrochemical Water Splitting. ChemCatChem, 2021, 13, 1940-1950.	3.7	8
122	Enhanced photoelectrochemical water splitting by oxides heterojunction photocathode coupled with Ag. Dalton Transactions, 2017, 46, 9886-9894.	3.3	7
123	Efficient photoelectrochemical performances of the novel honeycomb network-like CuBi2O4 films. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	7
124	NiO–CoFe2O4 electrocatalyst prepared on Ni foam by one-step hydrothermal method for efficient overall water splitting. Journal of Materials Science, 2021, 56, 8575-8587.	3.7	7
125	Controllable synthesis and formation mechanism of 3D flower-like TiO2 microspheres. Journal of Materials Science: Materials in Electronics, 2018, 29, 10277-10283.	2.2	6
126	ZnO/In2S3/Co–Pi ternary composite photoanodes for enhanced photoelectrochemical properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 18943-18949.	2.2	6

#	Article	IF	CITATIONS
127	Synergistic Use of a Solid Solution and a Cocatalyst on Co <i>_x</i> Cd _{1â€"<i>x</i>} S/Ni <i>_y</i> Fe _{1â€"<i>y</i>} -LDH for Efficient and Stable Photoelectrochemical Performance. ACS Applied Energy Materials, 2021, 4, 7233-7241.	5.1	6
128	Synthesis and Self-Cleaning Property of TiO2 Thin Film Doping with Fe3+, Al3+, Ce3+ Ions. Journal of Nanoscience and Nanotechnology, 2020, 20, 4084-4091.	0.9	6
129	The synergistic effect of CuBi ₂ O ₄ and Co-Pi: improving the PEC activity of BiVO ₄ 44-based composite materials. New Journal of Chemistry, 2022, 46, 2971-2979.	2.8	6
130	FeOOH interlayer with storing holes applied to construct WO3/FeOOH/Cu2O ternary heterojunction photoanode with dual built-in electric filed for efficient PEC cell. Journal of Alloys and Compounds, 2022, 917, 165496.	5.5	6
131	TiO2 hierarchical porous films sensitized by Sb2S3 nanoparticles for enhanced photoelectrochemical properties. Journal of Sol-Gel Science and Technology, 2017, 82, 157-166.	2.4	5
132	Ga-Doped AgInS2 Modified with Co–Pi Co–catalyst for Efficient Photoelectrochemical Water Splitting. Catalysis Letters, 2020, 150, 1089-1097.	2.6	5
133	The synergistic effect of surface and bulk O vacancies in a WO ₃ photoanode to advance carrier separation and light harvesting for photoelectrochemical water splitting. Dalton Transactions, 2022, 51, 6454-6463.	3.3	5
134	Controlling Superhydrophobicity of Aluminum with Hierarchical Microâ€Nanostructure Film for Superb Selfâ€Cleaning and Antiâ€Corrosion. ChemistrySelect, 2022, 7, .	1.5	5
135	Hyperbranched NixPy/NiCoP Arrays Based on Nickel Foam Electrode for Efficient and Stable Electrocatalytic Hydrogen Evolution. Electrocatalysis, 2022, 13, 611-621.	3.0	5
136	Preparation of cauliflower-like CdS/ZnS/ZnO nanostructure and its photoelectric properties. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	4
137	Preparation and Photocatalysis of Schlumbergera bridgesii-Like CdS Modified One-Dimensional TiO2 Nanowires on Zeolite. Journal of Materials Engineering and Performance, 2015, 24, 700-708.	2.5	4
138	Inorganic–organic solar cells based on quaternary sulfide as absorber materials. Physical Chemistry Chemical Physics, 2015, 17, 30993-30998.	2.8	4
139	Network-like CuInS2 photocathode and modified with noble metal co-catalyst for photoelectrochemical water splitting. Journal of Materials Science: Materials in Electronics, 2018, 29, 20629-20638.	2.2	4
140	Preparation and Photocatalysis of CuO/Bentonite Based on Adsorption and Photocatalytic Activity. Materials, 2021, 14, 5803.	2.9	4
141	Non-noble plasmonic MoO2 as photosensitizer of 1D TiO2 nanorods for enhancing visible-light photoelectrochemical performance. Surfaces and Interfaces, 2022, 31, 102082.	3.0	4
142	The preparation of CuS/TiO2 nanotube arrays with high-active under visible light by ultrasonic-assisted hydrothermal method. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	3
143	Decorating <scp> Cu ₂ O </scp> photocathode with cu/Al bimetallic layer for enhanced photoelectrochemical water splitting. International Journal of Energy Research, 2022, 46, 16991-17002.	4.5	3
144	Doping Sr and Introducing Oxygen Vacancies in Ba _{0.7} Sr _{0.3} TiO _{3â€X} Synergistically Promote the Pyroâ€Photoâ€Electric Catalysis Performance. ChemCatChem, 2022, 14, .	3.7	3

#	Article	IF	CITATIONS
145	Fabrication and Photoelectric Properties of Large Area ZnO Nanorod with Au Nanospheres. Plasmonics, 2016, 11, 131-137.	3.4	2
146	Effect on the Photocatalytic Activity of TiO2NTs Under Visible Light of Synergistic Effect of Ti3+ and S. Nano, 2018, 13, 1830001.	1.0	2
147	Bioinspired modification strategy to improve thermal conductivity and dielectric constant of natural rubber composite for thermal management applications. Journal of Applied Polymer Science, 2022, 139, 51949.	2.6	2
148	Enhanced electromechanical properties of natural rubber using mussel-inspired modification of calcium titanate particles with supercapacitive property. Polymers and Polymer Composites, 2022, 30, 096739112210766.	1.9	0