Rekha Ramesan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2877939/publications.pdf

Version: 2024-02-01

48 papers

1,396 citations

20 h-index 330143 37 g-index

49 all docs 49 docs citations

49 times ranked 2020 citing authors

#	Article	IF	CITATIONS
1	Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. Journal of Controlled Release, 2009, 135, 144-151.	9.9	212
2	Oral delivery of therapeutic protein/peptide for diabetes – Future perspectives. International Journal of Pharmaceutics, 2013, 440, 48-62.	5.2	137
3	Blood compatibility and in vitro transfection studies on cationically modified pullulan for liver cell targeted gene delivery. Biomaterials, 2009, 30, 6655-6664.	11.4	105
4	Hemocompatible pullulan–polyethyleneimine conjugates for liver cell gene delivery: In vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency. Acta Biomaterialia, 2011, 7, 370-379.	8.3	98
5	Challenges and advances in nanoparticle-based oral insulin delivery. Expert Review of Medical Devices, 2009, 6, 665-676.	2.8	60
6	Spermine grafted galactosylated chitosan for improved nanoparticle mediated gene delivery. International Journal of Pharmaceutics, 2011, 410, 125-137.	5.2	58
7	Bioadhesive hydrophobic chitosan microparticles for oral delivery of insulin: <i>In vitro</i> characterization and <i>in vivo</i> uptake studies. Journal of Applied Polymer Science, 2011, 119, 2902-2910.	2.6	47
8	Alginate stabilized gold nanoparticle as multidrug carrier: Evaluation of cellular interactions and hemolytic potential. Carbohydrate Polymers, 2016, 136, 71-80.	10.2	46
9	Dextran-protamine polycation: An efficient nonviral and haemocompatible gene delivery system. Colloids and Surfaces B: Biointerfaces, 2010, 81, 195-205.	5.0	40
10	Unraveling the Intracellular Efficacy of Dextran-Histidine Polycation as an Efficient Nonviral Gene Delivery System. Molecular Pharmaceutics, 2012, 9, 121-134.	4.6	37
11	Pullulan–protamine as efficient haemocompatible gene delivery vector: Synthesis and in vitro characterization. Carbohydrate Polymers, 2014, 102, 207-215.	10.2	35
12	Biomimetic mucin modified PLGA nanoparticles for enhanced blood compatibility. Journal of Colloid and Interface Science, 2013, 409, 237-244.	9.4	33
13	Alpha-amylase inhibitor changes during processing of sweet potato and taro tubers. Plant Foods for Human Nutrition, 2002, 57, 285-294.	3.2	32
14	Dextran–glycidyltrimethylammonium chloride conjugate/DNA nanoplex: A potential non-viral and haemocompatible gene delivery system. International Journal of Pharmaceutics, 2010, 389, 195-206.	5.2	31
15	Pullulan-histone antibody nanoconjugates for the removal of chromatin fragments from systemic circulation. Biomaterials, 2013, 34, 6328-6338.	11.4	27
16	Strontium ion cross-linked alginate-g-poly (PEGMA) xerogels for wound healing applications: in vitro studies. Carbohydrate Polymers, 2021, 251, 117119.	10.2	25
17	Histidine and arginine conjugated starch-PEI and its corresponding gold nanoparticles for gene delivery. International Journal of Biological Macromolecules, 2018, 120, 999-1008.	7.5	23
18	Efficacy of vinyl imidazole grafted cationized pullulan and dextran as gene delivery vectors: A comparative study. International Journal of Biological Macromolecules, 2017, 105, 947-955.	7.5	22

#	Article	IF	Citations
19	Phthalyl chitosan–poly(ethylene oxide) semiâ€interpenetrating polymer network microparticles for oral protein delivery: An <i>in vitro</i> characterization. Journal of Applied Polymer Science, 2008, 110, 2787-2795.	2.6	21
20	Collagen synthesis promoting pullulan–PEl–ascorbic acid conjugate as an efficient anti-cancer gene delivery vector. Carbohydrate Polymers, 2015, 126, 52-61.	10.2	21
21	Redox sensitive cationic pullulan for efficient gene transfection and drug retention in C6 glioma cells. International Journal of Pharmaceutics, 2017, 530, 401-414.	5 . 2	20
22	Elastin-like recombinamers with acquired functionalities for gene-delivery applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 3166-3178.	4.0	19
23	Simultaneous Effect of Thiolation and Carboxylation of Chitosan Particles Towards Mucoadhesive Oral Insulin Delivery Applications: An <l>ln</l> <l>Vitro</l> and <l>ln</l> <l>Vivo</l> Evaluation. Journal of Biomedical Nanotechnology, 2015, 11, 165-176.	1.1	19
24	Evaluation of lauryl chitosan graft polyethyleneimine as a potential carrier of genes and anticancer drugs. Process Biochemistry, 2012, 47, 1079-1088.	3.7	17
25	Cationised dextran and pullulan modified with diethyl aminoethyl methacrylate for gene delivery in cancer cells. Carbohydrate Polymers, 2020, 242, 116426.	10.2	17
26	Disulphide cross linked pullulan based cationic polymer for improved gene delivery and efflux pump inhibition. Colloids and Surfaces B: Biointerfaces, 2016, 146, 879-887.	5.0	15
27	Glutamineâ€chitosan microparticles as oral insulin delivery matrix: <i>In vitro</i> characterization. Journal of Applied Polymer Science, 2011, 122, 2374-2382.	2.6	14
28	Multifunctional polymeric nanoplexes for anticancer co-delivery of p53 and mitoxantrone. Journal of Materials Chemistry B, 2014, 2, 8005-8016.	5.8	14
29	Polymers for Gene Delivery: Current Status and Future Perspectives. Recent Patents on DNA & Gene Sequences, 2012, 6, 98-107.	0.7	13
30	Betaine conjugated cationic pullulan as effective gene carrier. International Journal of Biological Macromolecules, 2015, 72, 819-826.	7.5	13
31	UV-Crosslinked Electrospun Zein/PEO Fibroporous Membranes for Wound Dressing. ACS Applied Bio Materials, 2022, 5, 1538-1551.	4.6	13
32	Purification and Partial Characterization of Proteinase and 1±-Amylase Inhibitors from Lesser Yam (Dioscorea esculenta). International Journal of Food Properties, 2004, 7, 185-199.	3.0	12
33	Inhibitor potential of protease and α-amylase inhibitors of sweet potato and taro on the digestive enzymes of root crop storage pests. Journal of Stored Products Research, 2004, 40, 461-470.	2.6	12
34	Recent Advances in the Oral Delivery of Insulin. Recent Patents on Drug Delivery and Formulation, 2014, 8, 155-159.	2.1	12
35	Glutathione-bearing fluorescent polymer-curcumin conjugate enables simultaneous drug delivery and label-free cellular imaging. Polymer, 2015, 75, 25-33.	3.8	10
36	Methotrexate anchored carbon dots as theranostic probes: digitonin conjugation enhances cellular uptake and cytotoxicity. RSC Advances, 2016, 6, 56313-56318.	3.6	10

3

#	Article	IF	CITATIONS
37	Nanoparticle Mediated Oral Delivery of Peptides and Proteins. , 2011, , 165-194.		8
38	Aggregation of gold nanoparticles followed by methotrexate release enables Raman imaging of drug delivery into cancer cells. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	8
39	Synthesis and evaluation of an alginate-methacrylate xerogel for insulin delivery towards wound healing applications. Therapeutic Delivery, 2021, 12, 215-234.	2.2	7
40	Hydrophobic and hydrophilic modifications of polyethylenimine towards gene delivery applications. Journal of Applied Polymer Science, 2021, 138, 51323.	2.6	7
41	Intracellular Trafficking Mechanism and Cytosolic Protein Interactions of a Non Viral Gene Delivery Vector: Studies Based on Transferrin Conjugated Pullulan-PEI. Current Nanoscience, 2011, 7, 879-885.	1.2	6
42	Thiol redox-sensitive cationic polymers for dual delivery of drug and gene. Therapeutic Delivery, 2018, 9, 751-773.	2.2	5
43	Wound healing effects of glucose oxidase – peroxidase incorporated alginate diamine PEG-g-poly (PEGMA) xerogels under high glucose conditions: An in vitro evaluation. Materialia, 2022, 23, 101464.	2.7	5
44	An overview on the potential biomedical applications of polysaccharides., 2019,, 33-94.		4
45	Pullulan-based nanomaterials in drug delivery applications. , 2021, , 383-404.		2
46	Exploring the efficacy of ethylene glycol dimethacrylate crosslinked cationised pullulan for gene delivery in cancer cells. Journal of Drug Delivery Science and Technology, 2022, 68, 103067.	3.0	2
47	Intracellular delivery of p53 gene and drug using cationised pullulan thiomer lowers the effective therapeutic doses of chemotherapeutic drug in cancer cells. Materials Today Communications, 2022, 30, 103129.	1.9	2
48	Cationic Polyelectrolyte Vectors in Gene Delivery. , 2017, , 395-417.		0