Junchun Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2877749/publications.pdf Version: 2024-02-01

Інменнім Ун

#	Article	IF	CITATIONS
1	Piezoelectric inkjet printing of tyrosinase (polyphenol oxidase) enzyme on atmospheric plasma treated polyamide fabric. Scientific Reports, 2022, 12, 6828.	1.6	5
2	Effective Pretreatment Routes of Polyethylene Terephthalate Fabric for Digital Inkjet Printing of Enzyme. Advanced Materials Interfaces, 2021, 8, 2001882.	1.9	14
3	Supercritical CO2 dyeing of polyester fabric with photochromic dyes to fabricate UV sensing smart textiles. Dyes and Pigments, 2020, 183, 108671.	2.0	33
4	Effect of physical parameters and temperature on the piezo-electric jetting behaviour of UV-curable photochromic inks. Scientific Reports, 2020, 10, 18841.	1.6	10
5	Color Performance, Durability and Handle of Inkjet-Printed and UV-Cured Photochromic Textiles for Multi-Colored Applications. Fibers and Polymers, 2019, 20, 1424-1435.	1.1	27
6	Inkjetting of enzymes. , 2019, , 279-294.		3
7	Effects of ink characteristics and piezo-electric inkjetting parameters on lysozyme activity. Scientific Reports, 2019, 9, 18252.	1.6	15
8	Inkjet Printing of Curcumin-Based Ink for Coloration and Bioactivation of Polyamide, Silk, and Wool Fabrics. ACS Sustainable Chemistry and Engineering, 2019, 7, 2073-2082.	3.2	37
9	Resource-Efficient Production of a Smart Textile UV Sensor Using Photochromic Dyes: Characterization and Optimization. , 2018, , 251-257.		9
10	Digital inkjet functionalization of water-repellent textile for smart textile application. Journal of Materials Science, 2018, 53, 13216-13229.	1.7	18
11	Inkjet printing and UV-LED curing of photochromic dyes for functional and smart textile applications. RSC Advances, 2018, 8, 28395-28404.	1.7	49
12	Cellulose Nanofibril-Based Coatings of Woven Cotton Fabrics for Improved Inkjet Printing with a Potential in E-Textile Manufacturing. ACS Sustainable Chemistry and Engineering, 2017, 5, 4793-4801.	3.2	73
13	Characterization and optimization of an inkjet-printed smart textile UV-sensor cured with UV-LED light. IOP Conference Series: Materials Science and Engineering, 2017, 254, 072023.	0.3	11
14	Ac impedance of A ₄ C ₆₀ fullerides under pressure. New Journal of Physics, 2015, 17, 023010.	1.2	5
15	Effects of nanometer-size Laponite disks on thermal conductivity and specific heat of water and ice, and the gelation time. Colloid and Polymer Science, 2015, 293, 901-911.	1.0	14
16	Structure of graphene oxide membranes in solvents and solutions. Nanoscale, 2015, 7, 15374-15384.	2.8	98
17	Nanoâ€Engineering of SWNT Networks for Enhanced Charge Transport at Ultralow Nanotube Loading. Advanced Materials, 2014, 26, 3111-3117.	11.1	9
18	Thermal conductivity of highly crystallized polyethylene. Polymer, 2014, 55, 195-200.	1.8	72

Јимсним Үи

#	Article	IF	CITATIONS
19	SWNT nano-engineered networks strongly increase charge transport in P3HT. Nanoscale, 2014, 6, 11633-11636.	2.8	6
20	Carbon Nanotube Networks: Nanoâ€Engineering of SWNT Networks for Enhanced Charge Transport at Ultralow Nanotube Loading (Adv. Mater. 19/2014). Advanced Materials, 2014, 26, 3164-3164.	11.1	0
21	Selective Intercalation of Graphite Oxide by Methanol in Water/Methanol Mixtures. Journal of Physical Chemistry C, 2013, 117, 1963-1968.	1.5	51
22	Buckminsterfullerene: A Strong, Covalently Bonded, Reinforcing Filler and Reversible Cross-Linker in the Form of Clusters in a Polymer. ACS Macro Letters, 2013, 2, 511-517.	2.3	6
23	Solvation of graphite oxide in water–methanol binary polar solvents. Physica Status Solidi (B): Basic Research, 2012, 249, 2568-2571.	0.7	15
24	A MWCNT/Polyisoprene Composite Reinforced by an Effective Load Transfer Reflected in the Extent of Polymer Coating. Macromolecules, 2012, 45, 2841-2849.	2.2	23
25	Phase Transitions in Graphite Oxide Solvates at Temperatures Near Ambient. Journal of Physical Chemistry Letters, 2012, 3, 812-817.	2.1	56
26	Microstructural and property changes in high pressure treated carbon nanotube/polybutadiene composites. Journal of Materials Chemistry, 2011, 21, 13672.	6.7	5
27	Effects of cross-links, pressure and temperature on the thermal properties and glass transition behaviour of polybutadiene. Physical Chemistry Chemical Physics, 2011, 13, 15047.	1.3	26
28	Microstructure, nucleation and thermal properties of high-pressure crystallized MWCNT/nylon-6 composites. Polymer, 2011, 52, 5521-5527.	1.8	17
29	Thermal properties and transition studies of multi-wall carbon nanotube/nylon-6 composites. Carbon, 2011, 49, 4858-4866.	5.4	19
30	Thermal Conductivity and Heat Capacity of a Nylon-6â^•Multi-wall Carbon Nanotube Composite Under Pressure. , 2010, , .		2
31	High-Pressure-Induced Microstructural Evolution and Enhancement of Thermal Properties of Nylon-6. Macromolecules, 2010, 43, 10512-10520.	2.2	20
32	Tensile Strength and Young's Modulus of Polyisoprene/Single-Wall Carbon Nanotube Composites Increased by High Pressure Cross-linking Macromolecules, 2010, 43, 7680-7688.	2.2	33
33	Thermal Conductivity, Heat Capacity, and Cross-Linking of Polyisoprene/Single-Wall Carbon Nanotube Composites under High Pressure. Macromolecules, 2009, 42, 9295-9301.	2.2	59
34	Room-Temperature Sealing of Microcavities by Cold Metal Welding. Journal of Microelectromechanical Systems, 2009, 18, 1318-1325.	1.7	20
35	Polyisoprene single-wall carbon nanotube composites synthesized under high pressure. High Pressure Research, 2008, 28, 587-590.	0.4	4
36	Sequential Inkjet Printing of Lysozyme and Tyrosinase on Polyamide Fabric: Sustainable Enzyme Binding on Textile Surface. Advanced Materials Interfaces, 0, , 2200723.	1.9	1