
M Alessandra Papa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2877464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Physical Review D, 2018, 97, .	4.7	104
2	Characterizing the continuous gravitational-wave signal from boson clouds around Galactic isolated black holes. Physical Review D, 2020, 102, .	4.7	59
3	Search for continuous gravitational waves: Improving robustness versus instrumental artifacts. Physical Review D, 2014, 89, .	4.7	58
4	Postprocessing methods used in the search for continuous gravitational-wave signals from the Galactic Center. Physical Review D, 2015, 91, .	4.7	56
5	Sensitivity Improvements in the Search for Periodic Gravitational Waves Using O1 LIGO Data. Physical Review Letters, 2019, 123, 101101.	7.8	42
6	Results from the First All-Sky Search for Continuous Gravitational Waves from Small-Ellipticity Sources. Physical Review Letters, 2020, 125, 171101.	7.8	42
7	Einstein@Home All-sky Search for Continuous Gravitational Waves in LIGO O2 Public Data. Astrophysical Journal, 2021, 909, 79.	4.5	39
8	Deep learning for clustering of continuous gravitational wave candidates. Physical Review D, 2020, 101, .	4.7	35
9	Comparison of methods for the detection of gravitational waves from unknown neutron stars. Physical Review D, 2016, 94, .	4.7	34
10	Search for Continuous Gravitational Waves from Scorpius X-1 in LIGO O2 Data. Astrophysical Journal Letters, 2021, 906, L14.	8.3	34
11	Einstein@Home search for continuous gravitational waves from Cassiopeia A. Physical Review D, 2016, 94, .	4.7	28
12	Results from an Einstein@Home search for continuous gravitational waves from Cassiopeia A, Vela Jr., and G347.3. Physical Review D, 2019, 100, .	4.7	28
13	Search for Continuous Gravitational Waves from the Central Compact Objects in Supernova Remnants Cassiopeia A, Vela Jr., and G347.3–0.5. Astrophysical Journal, 2020, 897, 22.	4.5	28
14	First Search for r-mode Gravitational Waves from PSR J0537–6910. Astrophysical Journal, 2020, 895, 11.	4.5	27
15	Hierarchical follow-up of subthreshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data. Physical Review D, 2016, 94, .	4.7	26
16	Results from high-frequency all-sky search for continuous gravitational waves from small-ellipticity sources. Physical Review D, 2021, 103, .	4.7	26
17	Optimal directed searches for continuous gravitational waves. Physical Review D, 2016, 93, .	4.7	24
18	Implementing a semicoherent search for continuous gravitational waves using optimally constructed template banks. Physical Review D, 2018, 97, .	4.7	24

M Alessandra Papa

#	Article	IF	CITATIONS
19	Results from an extended Falcon all-sky survey for continuous gravitational waves. Physical Review D, 2020, 101, .	4.7	23
20	Detection and Timing of Gamma-Ray Pulsations from the 707 Hz Pulsar J0952â~'0607. Astrophysical Journal, 2019, 883, 42.	4.5	22
21	New veto for continuous gravitational wave searches. Physical Review D, 2017, 96, .	4.7	21
22	Adaptive clustering procedure for continuous gravitational wave searches. Physical Review D, 2017, 96, .	4.7	19
23	Loosely coherent search in LIGO O1 data for continuous gravitational waves from Terzan 5 and the Galactic Center. Physical Review D, 2019, 99, .	4.7	19
24	Constraints on r-modes and Mountains on Millisecond Neutron Stars in Binary Systems. Astrophysical Journal Letters, 2022, 929, L19.	8.3	18
25	Search for continuous gravitational waves from small-ellipticity sources at low frequencies. Physical Review D, 2021, 104, .	4.7	17
26	Optimizing the choice of analysis method for all-sky searches for continuous gravitational waves with Einstein@Home. Physical Review D, 2019, 99, .	4.7	15
27	Optimally setting up directed searches for continuous gravitational waves in Advanced LIGO O1 data. Physical Review D, 2018, 97, .	4.7	14
28	Deep learning for clustering of continuous gravitational wave candidates. II. Identification of low-SNR candidates. Physical Review D, 2021, 103, .	4.7	14
29	New Searches for Continuous Gravitational Waves from Seven Fast Pulsars. Astrophysical Journal, 2021, 923, 85.	4.5	14
30	Results of an all-sky high-frequency Einstein@Home search for continuous gravitational waves in LIGO's fifth science run. Physical Review D, 2016, 94, .	4.7	13
31	Resampling to accelerate cross-correlation searches for continuous gravitational waves from binary systems. Physical Review D, 2018, 97, .	4.7	12
32	Characterizing the sensitivity of isolated continuous gravitational wave searches to binary orbits. Physical Review D, 2019, 100, .	4.7	12
33	Identification and removal of non-Gaussian noise transients for gravitational-wave searches. Physical Review D, 2022, 105, .	4.7	9
34	Results From an Einstein@Home Search for Continuous Gravitational Waves From G347.3 at Low Frequencies in LIGO O2 Data. Astrophysical Journal, 2022, 925, 8.	4.5	9
35	Using a cleaning technique for the search of continuous gravitational waves in LIGO data. Journal of Physics: Conference Series, 2010, 228, 012006.	0.4	6