List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2876939/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | South Asian (Clade I) <i>Candida auris</i> meningitis in a paediatric patient in Iran with a review of the<br>literature. Mycoses, 2022, 65, 134-139.                                                                                                                          | 1.8 | 20        |
| 2  | A Chronic Autochthonous Fifth Clade Case of Candida auris Otomycosis in Iran. Mycopathologia, 2022, 187, 121-127.                                                                                                                                                              | 1.3 | 18        |
| 3  | Unified-amplifier based primer exchange reaction (UniAmPER) enabled detection of SARS-CoV-2 from clinical samples. Sensors and Actuators B: Chemical, 2022, 357, 131409.                                                                                                       | 4.0 | 8         |
| 4  | Candidemia among Hospitalized Pediatric Patients Caused by Several Clonal Lineages of Candida<br>parapsilosis. Journal of Fungi (Basel, Switzerland), 2022, 8, 183.                                                                                                            | 1.5 | 6         |
| 5  | Multiplex size marker (YEAST PLEX) for rapid and accurate identification of pathogenic yeasts. Journal of Clinical Laboratory Analysis, 2022, 36, e24370.                                                                                                                      | 0.9 | 8         |
| 6  | Chromosome-scale Echinococcus granulosus (genotype G1) genome reveals the Eg95 gene family and conservation of the EG95-vaccine molecule. Communications Biology, 2022, 5, 199.                                                                                                | 2.0 | 7         |
| 7  | Evaluation of Candida auris Colonization using Clinical Skin Swabs: A Single-Center Study in Isfahan,<br>Iran. , 2022, 8, .                                                                                                                                                    |     | Ο         |
| 8  | An Eco-Epidemiological Study on Zoonotic Cutaneous Leishmaniasis in Central Iran. Iranian Journal of<br>Public Health, 2021, 50, 350-359.                                                                                                                                      | 0.3 | 7         |
| 9  | Asymptomatic carriers of coronavirus disease 2019Âamong healthcare workers in Isfahan, Iran. Future<br>Virology, 2021, 16, 93-98.                                                                                                                                              | 0.9 | 11        |
| 10 | Direct Detection and Identification of the Most Common Bacteria and Fungi Causing Otitis Externa by a Stepwise Multiplex PCR. Frontiers in Cellular and Infection Microbiology, 2021, 11, 644060.                                                                              | 1.8 | 30        |
| 11 | The doubleâ€edged sword of systemic corticosteroid therapy in viral pneumonia: A case report and comparative review of influenzaâ€associated mucormycosis versus COVIDâ€19 associated mucormycosis. Mycoses, 2021, 64, 798-808.                                                | 1.8 | 149       |
| 12 | Molecular identification and antifungal susceptibility profiles of <i>Candida dubliniensis</i> and <i>Candida africana</i> isolated from vulvovaginal candidiasis: A singleâ€centre experience in Iran.<br>Mycoses, 2021, 64, 771-779.                                         | 1.8 | 16        |
| 13 | COVID-19 infection risk from exposure to aerosols of wastewater treatment plants. Chemosphere, 2021, 273, 129701.                                                                                                                                                              | 4.2 | 61        |
| 14 | Differentiation of Candida albicans complex species isolated from invasive and non-invasive infections using HWP1 gene size polymorphism. Current Medical Mycology, 2021, 7, 34-38.                                                                                            | 0.8 | 4         |
| 15 | A simple multiplex polymerase chain reaction assay for rapid identification of the common pathogenic dermatophytes:Trichophyton interdigitale, Trichophyton rubrum, and Epidermophyton floccosum. Current Medical Mycology, 2021, 7, 1-7.                                      | 0.8 | 0         |
| 16 | Molecular identification of Malassezia species isolated from neonates hospitalized in Neonatal intensive care units and their mothers. Current Medical Mycology, 2021, 7, 13-17.                                                                                               | 0.8 | 1         |
| 17 | Isolation and molecular characterization of clinical and environmental dematiaceous fungi and relatives from Iran. Current Medical Mycology, 2021, 7, 1-8.                                                                                                                     | 0.8 | 5         |
| 18 | Comparison of the RE-529 sequence and B1 gene for Toxoplasma gondii detection in blood samples of the at-risk seropositive cases using uracil DNA glycosylase supplemented loop-mediated isothermal amplification (UDG-LAMP) assay. Microbial Pathogenesis, 2020, 140, 103938. | 1.3 | 17        |

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The first case of fingernail onychomycosis due to Neoscytalidium novaehollandiae, molecular<br>identification and antifungal susceptibility. Journal De Mycologie Medicale, 2020, 30, 100920.                                                                                   | 0.7 | 10        |
| 20 | Otomycosis Due to the Rare Fungi Talaromyces purpurogenus, Naganishia albida and Filobasidium<br>magnum. Mycopathologia, 2020, 185, 569-575.                                                                                                                                    | 1.3 | 21        |
| 21 | Fatal Invasive Pulmonary Aspergillosis in COVID-19 Patient with Acute Myeloid Leukemia in Iran.<br>Mycopathologia, 2020, 185, 1077-1084.                                                                                                                                        | 1.3 | 30        |
| 22 | The first rare and fatal case of invasive aspergillosis of spinal cord due to Aspergillus nidulans in an<br>Iranian child with chronic granulomatosis disease: review of literature. Current Medical Mycology,<br>2020, 6, 55-60.                                               | 0.8 | 9         |
| 23 | Molecular Identification of Leishmania Species in Phlebotomus alexandri (Diptera: Psychodidae) in<br>Western Iran. Iranian Journal of Arthropod-borne Diseases, 2020, 14, 8-16.                                                                                                 | 0.8 | 11        |
| 24 | <em>Candida africana</em> and <em>Candida dubliniensis</em> as causes of<br>pediatric candiduria: A study using <em>HWP1</em> gene size polymorphism. AIMS<br>Microbiology, 2020, 6, 272-279.                                                                                   | 1.0 | 9         |
| 25 | Translation elongation factor 1-alpha gene as a marker for diagnosing of Candida onychomycosis.<br>Current Medical Mycology, 2020, 6, 15-21.                                                                                                                                    | 0.8 | 3         |
| 26 | Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Contamination of High-touch Surfaces in Field Settings. Biomedical and Environmental Sciences, 2020, 33, 925-929.                                                                                                  | 0.2 | 16        |
| 27 | Analysis of nad2 and nad5 enables reliable identification of genotypes G6 and G7 within the species complex Echinococcus granulosus sensu lato. Infection, Genetics and Evolution, 2019, 74, 103941.                                                                            | 1.0 | 16        |
| 28 | Rapid differential diagnosis of vaginal infections using gold nanoparticles coated with specific antibodies. Medical Microbiology and Immunology, 2019, 208, 773-780.                                                                                                           | 2.6 | 13        |
| 29 | Asymptomatic malaria infections among immigrants in malaria-elimination programmed areas of south<br>eastern Iran may threaten malaria eradication. Travel Medicine and Infectious Disease, 2019, 31, 101426.                                                                   | 1.5 | 3         |
| 30 | Species distribution and antifungal susceptibility profile of Candida isolates from blood and other<br>normally sterile foci from pediatric ICU patients in Tehran, Iran. Medical Mycology, 2019, 58, 201-206.                                                                  | 0.3 | 11        |
| 31 | Methods for identification of Candida auris, the yeast of global public health concern: A review.<br>Journal De Mycologie Medicale, 2019, 29, 174-179.                                                                                                                          | 0.7 | 20        |
| 32 | Low Level of Antifungal Resistance in Iranian Isolates of Candida glabrata Recovered from Blood<br>Samples in a Multicenter Study from 2015 to 2018 and Potential Prognostic Values of Genotyping and<br>Sequencing of PDR1. Antimicrobial Agents and Chemotherapy, 2019, 63, . | 1.4 | 39        |
| 33 | Clinical and microbial epidemiology of otomycosis in the city of Yasuj, southwest Iran, revealing<br>Aspergillus tubingensis as the dominant causative agent. Journal of Medical Microbiology, 2019, 68,<br>585-590.                                                            | 0.7 | 25        |
| 34 | Molecular epidemiology of otomycosis in Isfahan revealed a large diversity in causative agents.<br>Journal of Medical Microbiology, 2019, 68, 918-923.                                                                                                                          | 0.7 | 27        |
| 35 | Frequency of Uncommon Clinical Yeast Species Confirmed by ITS-Sequencing. Archives of Clinical Infectious Diseases, 2019, In Press, .                                                                                                                                           | 0.1 | 2         |
| 36 | Candiduria in Hospitalized Patients and Identification of Isolated Candida Species by Morphological<br>and Molecular Methods in Ilam, Iran. Iranian Journal of Public Health, 2019, 48, 156-161.                                                                                | 0.3 | 7         |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | In Vitro Activity of Amphotericin B in Combination with Statins against Clinical and Environmental<br>Strains. Iranian Journal of Public Health, 2019, 48, 943-948.                                                                | 0.3 | 2         |
| 38 | Genetic diversity and phylogeography of the elusive, but epidemiologically important <i>Echinococcus granulosus</i> sensu stricto genotype G3. Parasitology, 2018, 145, 1613-1622.                                                 | 0.7 | 41        |
| 39 | Microbial epidemiology of candidaemia in neonatal and paediatric intensive care units at the Children's Medical Center, Tehran. Mycoses, 2018, 61, 22-29.                                                                          | 1.8 | 32        |
| 40 | Molecular Identification of <i>Cryptosporidium</i> spp. in Iranian Dogs Using Seminested PCR: A First<br>Report. Vector-Borne and Zoonotic Diseases, 2018, 18, 96-100.                                                             | 0.6 | 12        |
| 41 | Characterization of beta-tubulin DNA sequences within Candida parapsilosis complex. Current<br>Medical Mycology, 2018, 4, 24-29.                                                                                                   | 0.8 | 2         |
| 42 | Global phylogeography and genetic diversity of the zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1. International Journal for Parasitology, 2018, 48, 729-742.                                                 | 1.3 | 77        |
| 43 | Molecular phylogeny based on six nuclear genes suggests that <i>Echinococcus granulosus sensu<br/>lato</i> genotypes G6/G7 and G8/G10 can be regarded as two distinct species. Parasitology, 2018, 145,<br>1929-1937.              | 0.7 | 69        |
| 44 | Distinguishing Echinococcus granulosus sensu stricto genotypes G1 and G3 with confidence: A practical guide. Infection, Genetics and Evolution, 2018, 64, 178-184.                                                                 | 1.0 | 54        |
| 45 | Population Structure ofLeishmania tropicaCausing Anthroponotic Cutaneous Leishmaniasis in<br>Southern Iran by PCR-RFLP of Kinetoplastid DNA. BioMed Research International, 2018, 2018, 1-11.                                      | 0.9 | 24        |
| 46 | Population structures of Leishmania infantum and Leishmania tropica the causative agents of kala-azar in Southwest Iran. Parasitology Research, 2018, 117, 3447-3458.                                                              | 0.6 | 16        |
| 47 | The benefits of analysing complete mitochondrial genomes: Deep insights into the phylogeny and population structure of Echinococcus granulosus sensu lato genotypes G6 and G7. Infection, Genetics and Evolution, 2018, 64, 85-94. | 1.0 | 52        |
| 48 | Candida africana in recurrent vulvovaginal candidiasis (RVVC) patients: frequency and phenotypic and genotypic characteristics. Journal of Medical Microbiology, 2018, 67, 1601-1607.                                              | 0.7 | 13        |
| 49 | Candidemia in Children Caused by Uncommon Species of Candida. Archives of Pediatric Infectious<br>Diseases, 2018, 6, .                                                                                                             | 0.1 | 12        |
| 50 | Detection of in Acute and Chronic Phases of Infection in Immunocompromised Patients and Pregnant<br>Women with Real-time PCR Assay Using TaqMan Fluorescent Probe. Iranian Journal of Parasitology,<br>2018, 13, 373-381.          | 0.6 | 9         |
| 51 | New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto. Infection, Genetics and Evolution, 2017, 52, 52-58.                                       | 1.0 | 102       |
| 52 | Multilocus sequence analysis of Echinococcus granulosus strains isolated from humans and animals<br>in Iran. Experimental Parasitology, 2017, 183, 50-55.                                                                          | 0.5 | 12        |
| 53 | <i>In Vitro</i> Activities of Luliconazole, Lanoconazole, and Efinaconazole Compared with Those of<br>Five Antifungal Drugs against Melanized Fungi and Relatives. Antimicrobial Agents and Chemotherapy,<br>2017, 61, .           | 1.4 | 24        |
| 54 | Clinical evaluation of βâ€ŧubulin realâ€ŧime <scp>PCR</scp> for rapid diagnosis of dermatophytosis, a comparison with mycological methods. Mycoses, 2017, 60, 692-696.                                                             | 1.8 | 15        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Genetic Lineages of Mycobacterium tuberculosis Isolates in Isfahan, Iran. Current Microbiology, 2017,<br>74, 14-21.                                                                                                                            | 1.0 | 14        |
| 56 | Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes. Mycopathologia, 2017, 182, 5-31.                                                                                                                                        | 1.3 | 447       |
| 57 | Antifungal susceptibility testing of Candida species isolated from the immunocompromised patients<br>admitted to ten university hospitals in Iran: comparison of colonizing and infecting isolates. BMC<br>Infectious Diseases, 2017, 17, 727. | 1.3 | 37        |
| 58 | Regulation of ERG3, ERG6, and ERG11 Genes in Antifungal-Resistant isolates of Candida parapsilosis.<br>Iranian Biomedical Journal, 2017, 21, 275-281.                                                                                          | 0.4 | 16        |
| 59 | Utilization of size polymorphism in ITS1 and ITS2 regions for identification of pathogenic yeast species.<br>Journal of Medical Microbiology, 2017, 66, 126-133.                                                                               | 0.7 | 15        |
| 60 | Characterization of the translation elongation factor $1 \cdot \hat{l} \pm$ gene in a wide range of pathogenic Aspergillus species. Journal of Medical Microbiology, 2017, 66, 419-429.                                                        | 0.7 | 4         |
| 61 | A comparison between CHROMagar, PCR-RFLP and PCR-FSP for identification of Candida species.<br>Current Medical Mycology, 2017, 3, 10-15.                                                                                                       | 0.8 | 12        |
| 62 | Optimal DNA Isolation Method for Detection of Nontuberculous Mycobacteria by Polymerase Chain<br>Reaction. Advanced Biomedical Research, 2017, 6, 133.                                                                                         | 0.2 | 8         |
| 63 | Rapid Detection of Streptomycin-Resistant Mycobacterium tuberculosis by rpsL-Restriction Fragment<br>Length Polymorphism. Advanced Biomedical Research, 2017, 6, 126.                                                                          | 0.2 | 4         |
| 64 | Caspofungin-Non-Susceptible Isolated from Onychomycosis in Iran. Iranian Journal of Public Health, 2017, 46, 235-241.                                                                                                                          | 0.3 | 5         |
| 65 | Transmission of by (Acari: Ixodidae) in Dogs. Iranian Journal of Parasitology, 2017, 12, 482-489.                                                                                                                                              | 0.6 | 4         |
| 66 | Molecular Epidemiological Survey of Cutaneous Leishmaniasis in Two Highly Endemic Metropolises of<br>Iran, Application of FTA Cards for DNA Extraction From Giemsa-Stained Slides. Jundishapur Journal of<br>Microbiology, 2016, 9, e32885.    | 0.2 | 26        |
| 67 | Genetic and Morphological Diversity of the Genus Penicillium From Mazandaran and Tehran<br>Provinces, Iran. Jundishapur Journal of Microbiology, 2016, 9, e28280.                                                                              | 0.2 | 9         |
| 68 | Growing Incidence of Non-Dermatophyte Onychomycosis in Tehran, Iran. Jundishapur Journal of<br>Microbiology, 2016, 9, e40543.                                                                                                                  | 0.2 | 29        |
| 69 | In Vitro Activities of Five Antifungal Drugs Against Opportunistic Agents of Aspergillus Nigri<br>Complex. Mycopathologia, 2016, 181, 235-240.                                                                                                 | 1.3 | 33        |
| 70 | Differential expression profiles of the salivary proteins SP15 and SP44 from Phlebotomus papatasi.<br>Parasites and Vectors, 2016, 9, 357.                                                                                                     | 1.0 | 7         |
| 71 | Development a diagnostic panâ€dermatophyte TaqMan probe realâ€ŧime <scp>PCR</scp> assay based on beta<br>tubulin gene. Mycoses, 2016, 59, 520-527.                                                                                             | 1.8 | 8         |
| 72 | Phylogenetic analysis of dermatophyte species using DNA sequence polymorphism in calmodulin gene.<br>Medical Mycology, 2016, 54, 500-514.                                                                                                      | 0.3 | 43        |

HOSSEIN MIRHENDI

| #  | Article                                                                                                                                                                                                                                                              | IF         | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 73 | In Vitro Susceptibility and Trailing Growth Effect of Clinical Isolates of Candida Species to Azole<br>Drugs. Jundishapur Journal of Microbiology, 2016, 9, e28666.                                                                                                  | 0.2        | 15           |
| 74 | The first case of onychomycosis in a koala (Phascolarctos cinereus) due to atypical isolates of Microsporum gypseum, a diagnostic challenge. Current Medical Mycology, 2016, 2, 0-0.                                                                                 | 0.8        | 2            |
| 75 | Seasonal and Physiological Variations of Phlebotomus papatasi Salivary Gland Antigens in Central<br>Iran. Journal of Arthropod-Borne Diseases, 2016, 10, 39-49.                                                                                                      | 0.9        | 4            |
| 76 | Antifungal Susceptibility Analysis of Clinical Isolates of Candida parapsilosis in Iran. Iranian Journal of Public Health, 2016, 45, 322-8.                                                                                                                          | 0.3        | 13           |
| 77 | High Insecticides Resistance in (Diptera: Culicidae) from Tehran, Capital of Iran. Journal of<br>Arthropod-Borne Diseases, 2016, 10, 483-492.                                                                                                                        | 0.9        | 9            |
| 78 | Current Susceptibility Status of (Diptera: Culicidae) to Different Imagicides in a Malarious Area,<br>Southeastern of Iran. Journal of Arthropod-Borne Diseases, 2016, 10, 493-500.                                                                                  | 0.9        | 25           |
| 79 | Simplified Pan-species Real-time PCR-based Detection of Spp. in Blood Smear. Iranian Journal of Parasitology, 2016, 11, 463-470.                                                                                                                                     | 0.6        | 3            |
| 80 | The first case of onychomycosis due to <i>Aspergillus uvarum</i> (section <i>Nigri</i> ). Mycoses, 2015, 58, 239-242.                                                                                                                                                | 1.8        | 10           |
| 81 | Use of Restriction Fragment Length Polymorphism to Rapidly Identify Dermatophyte Species Related to Dermatophytosis. Jundishapur Journal of Microbiology, 2015, 8, e17296.                                                                                           | 0.2        | 23           |
| 82 | Aspergillus species as emerging causative agents of onychomycosis. Journal De Mycologie Medicale, 2015, 25, 101-107.                                                                                                                                                 | 0.7        | 51           |
| 83 | Translation elongation factor $1 \cdot \hat{l} \pm$ gene as a potential taxonomic and identification marker in dermatophytes. Medical Mycology, 2015, 53, 215-224.                                                                                                   | 0.3        | 75           |
| 84 | Genotyping and molecular analysis of Enterocytozoon bieneusi isolated from immunocompromised patients in Iran. Infection, Genetics and Evolution, 2015, 36, 244-249.                                                                                                 | 1.0        | 36           |
| 85 | Comparison of Nested Polymerase Chain Reaction and Real-Time Polymerase Chain Reaction with<br>Parasitological Methods for Detection of Strongyloides stercoralis in Human Fecal Samples.<br>American Journal of Tropical Medicine and Hygiene, 2015, 93, 1285-1291. | 0.6        | 47           |
| 86 | A comparative study on morphological versus molecular identification of dermatophyte isolates.<br>Journal De Mycologie Medicale, 2015, 25, 29-35.                                                                                                                    | 0.7        | 35           |
| 87 | Black Aspergillus species isolated from clinical and environmental samples in Iran. Journal of Medical Microbiology, 2015, 64, 1454-1456.                                                                                                                            | 0.7        | 13           |
| 88 | Morphological and Genotypic Variations among the Species of the Subgenus Adlerius (Diptera:) Tj ETQq0 0 0 rgB                                                                                                                                                        | T /Oyerloc | k 10 Tf 50 1 |
| 89 | Detection of Fungal Elements in Atherosclerotic Plaques Using Mycological, Pathological and Molecular Methods. Iranian Journal of Public Health, 2015, 44, 1121-5.                                                                                                   | 0.3        | 3            |

90Detection of Aspergillus flavus and A. fumigatus in Bronchoalveolar Lavage Samples of Hematopoietic<br/>Stem Cell Transplants and Patients with Hematological Malignancies by Real-Time Polymerase Chain<br/>Reaction, Nested Polymerase Chain Reaction and Mycological Assays. Jundishapur Journal of0.230Microbiology, 2014, 8, e13744.

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | β-D-Glucan Assay in Diagnosis and Monitoring the Systemic Candidiasis in a Rat Model. Jundishapur<br>Journal of Microbiology, 2014, 7, e10247.                                                                                                     | 0.2 | 2         |
| 92  | Restriction Analysis of β-Tubulin Gene for Differentiation of the Common Pathogenic Dermatophytes.<br>Journal of Clinical Laboratory Analysis, 2014, 28, 91-96.                                                                                    | 0.9 | 24        |
| 93  | Heterogeneity of the internal transcribed spacer region in Leishmania tropica isolates from southern<br>Iran. Experimental Parasitology, 2014, 144, 44-51.                                                                                         | 0.5 | 25        |
| 94  | Nucleotide sequence analysis of beta tubulin gene in a wide range of dermatophytes. Medical<br>Mycology, 2014, 52, 674-688.                                                                                                                        | 0.3 | 56        |
| 95  | Genotyping of Echinococcus granulosus Isolates from Human Clinical Samples Based on Sequencing of Mitochondrial Genes in Iran, Tehran. Iranian Journal of Parasitology, 2014, 9, 20-7.                                                             | 0.6 | 27        |
| 96  | Molecular characterization of Aspergillus infections in an Iranian educational hospital using RAPD-PCR method. Iranian Journal of Basic Medical Sciences, 2014, 17, 646-50.                                                                        | 1.0 | 6         |
| 97  | Emerging Intestinal Microsporidia Infection in HIV(+)/AIDS Patients in Iran: Microscopic and Molecular<br>Detection. Iranian Journal of Parasitology, 2014, 9, 149-54.                                                                             | 0.6 | 30        |
| 98  | An Analysis of Clinical Characteristics of Strongyloides stercoralis in 70 indigenous patients in Iran.<br>Iranian Journal of Parasitology, 2014, 9, 155-62.                                                                                       | 0.6 | 19        |
| 99  | Use of Mycological, nested PCR, and Real-time PCR Methods on BAL Fluids for Detection of Aspergillus fumigatus and A. flavus in Solid Organ Transplant Recipients. Mycopathologia, 2013, 176, 377-385.                                             | 1.3 | 33        |
| 100 | Molecular epidemiology of dermatophytosis in Tehran, Iran, a clinical and microbial survey. Medical<br>Mycology, 2013, 51, 203-207.                                                                                                                | 0.3 | 63        |
| 101 | Molecular identification and distribution profile of <i>Candida</i> species isolated from Iranian patients. Medical Mycology, 2013, 51, 657-663.                                                                                                   | 0.3 | 93        |
| 102 | Incidence of Pulmonary Aspergillosis and Correlation of Conventional Diagnostic Methods with<br>Nested PCR and Real-Time PCR Assay Using BAL Fluid in Intensive Care Unit Patients. Journal of Clinical<br>Laboratory Analysis, 2013, 27, 181-185. | 0.9 | 21        |
| 103 | First case of disseminated phaeohyphomycosis in an immunocompetent individual due to Alternaria malorum. Medical Mycology, 2013, 51, 196-202.                                                                                                      | 0.3 | 26        |
| 104 | Toxocara nematodes in stray cats from shiraz, southern iran: intensity of infection and molecular identification of the isolates. Iranian Journal of Parasitology, 2013, 8, 593-600.                                                               | 0.6 | 15        |
| 105 | A Molecular Epidemiological Survey of Clinically Important Dermatophytes in Iran Based on Specific<br>RFLP Profiles of Beta-tubulin Gene. Iranian Journal of Public Health, 2013, 42, 1049-57.                                                     | 0.3 | 29        |
| 106 | Identification of Yeasts Isolated from Varieties of Apples and Citrus Using PCR-Fragment Size<br>Polymorphism and Sequencing of ITS1–5.8S-ITS2 region. Food Biotechnology, 2012, 26, 252-265.                                                      | 0.6 | 5         |
| 107 | Multilocus differentiation of the related dermatophytes Microsporum canis, Microsporum ferrugineum and Microsporum audouinii. Journal of Medical Microbiology, 2012, 61, 57-63.                                                                    | 0.7 | 39        |
| 108 | A case report of tinea pedis caused by Trichosporon faecale in Iran. Medical Mycology Case Reports, 2012, 1, 49-51.                                                                                                                                | 0.7 | 4         |

| #   | Article                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Discrimination of<br>Translation Elongation Factor 1-Î $\pm$ sequencing. Medical Mycology, 2012, 50, 760-764. | 0.3 | 23        |

## Sequence analysis of cox1 and nad1 genes in Echinococcus granulosus G3 genotype in camels (Camelus) Tj ETQq0.0 rgBT $\frac{10}{80}$ verlock 1

| 111 | Genotype identification of human cystic echinococcosis in Isfahan, central Iran. Parasitology<br>Research, 2010, 107, 757-760.                                                                                                                     | 0.6 | 43  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 112 | Identification and differentiation of Fasciola hepatica and Fasciola gigantica using a simple PCR-restriction enzyme method. Experimental Parasitology, 2010, 124, 209-213.                                                                        | 0.5 | 72  |
| 113 | Echinococcus granulosus genotypes in livestock of Iran indicating high frequency of G1 genotype in camels. Experimental Parasitology, 2010, 124, 373-379.                                                                                          | 0.5 | 58  |
| 114 | Molecular screening for Candida orthopsilosis and Candidametapsilosis among Danish Candida<br>parapsilosis group blood cultureisolates: proposal of a new RFLP profile for differentiation. Journal<br>of Medical Microbiology, 2010, 59, 414-420. | 0.7 | 60  |
| 115 | Genetic categorization of <i>Echinococcus granulosus</i> from humans and herbivorous hosts in<br>Iran using an integrated mutation scanningâ€phylogenetic approach. Electrophoresis, 2009, 30,<br>2648-2655.                                       | 1.3 | 77  |
| 116 | A One-Enzyme PCR-RFLP Assay for Identification of Six Medically Important Candida Species. Medical<br>Mycology Journal, 2006, 47, 225-229.                                                                                                         | 0.9 | 173 |
| 117 | A simple PCR-RFLP method for identification and differentiation of 11 Malassezia species. Journal of Microbiological Methods, 2005, 61, 281-284.                                                                                                   | 0.7 | 86  |
| 118 | Differentiation of Candida albicans and Candida dubliniensis using a single-enzyme PCR-RFLP method.<br>Japanese Journal of Infectious Diseases, 2005, 58, 235-7.                                                                                   | 0.5 | 39  |
| 119 | An outbreak of cutaneous leishmaniasis due to Leishmania major in an endemic focus in central Iran.<br>Journal of Parasitic Diseases, 0, , 1.                                                                                                      | 0.4 | 0   |