
Rando Tungga Rtd Dewa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2876785/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proposed Novel Eco-Friendly Natural Fiber of Gnetum Gnemon for Military Grade Applications. Jurnal Rekayasa Mesin, 2022, 17, 189.	0.0	0
2	Improved extrapolation method for the fatigue damage of bus structural steel under service loading. Journal of Mechanical Science and Technology, 2021, 35, 4437-4442.	1.5	0
3	Fatigue Strength Analysis of S34MnV Steel by Accelerated Staircase Test. Open Engineering, 2020, 10, 394-400.	1.6	12
4	Investigation of post-weld heat treatment (T6) and welding orientation on the strength of TIG-welded AL6061. Open Engineering, 2020, 10, 753-761.	1.6	3
5	Statistical approaches on the design of fatigue stress spectra for bus structures. SN Applied Sciences, 2019, 1, 1.	2.9	4
6	Probabilistic Evaluation of Fatigue Crack Growth Rate for Longitudinal Tungsten Inert Gas Welded Al 6013-T4 Under Various PostWeld Heat Treatment Conditions. E3S Web of Conferences, 2019, 130, 01016.	0.5	3
7	A review of low-cycle fatigue of Alloy 617 for use in VHTR components: Experimental outlook. MATEC Web of Conferences, 2018, 159, 02049.	0.2	3
8	The Comparison of Bond Strength between Geopolymer Concrete and OPC Concrete for Plain Reinforcing Bars. MATEC Web of Conferences, 2018, 159, 01017.	0.2	6
9	Evaluation of the low cycle fatigue failure properties for GTAW weldments of Alloy 617 at 950â€ ⁻ °C. Engineering Failure Analysis, 2018, 90, 202-214.	4.0	6
10	Uniaxial Low-Cycle Fatigue Study of Alloy 800H Weldments at 700 °C. Metals, 2018, 8, 918.	2.3	6
11	Low Cycle Fatigue Behavior of Alloy 800H Base Metal and Weldments at 700ŰC. , 2018, , .		0
12	Improvement of magnetorheological greases with superparamagnetic nanoparticles. MATEC Web of Conferences, 2018, 159, 02066.	0.2	6
13	High-Temperature Creep-Fatigue Behavior of Alloy 617. Metals, 2018, 8, 103.	2.3	25
14	Fatigue Strength and Fracture Behavior for Overlap Weldment of Gas Metal Arc Welding in Dual Phase Steel. Journal of Power System Engineering, 2018, 22, 60-66.	0.4	0
15	Effect of Strain Range on the Low Cycle Fatigue in Alloy 617 at High Temperature. Metals, 2017, 7, 54.	2.3	18
16	Low Cycle Fatigue Life Assessment of Alloy 617 Weldments at 900â,,ƒ by Coffin-Manson and Strain Energy Density-Based Models. Journal of Power System Engineering, 2017, 21, 43-49.	0.4	0
17	Low Cycle Fatigue Behaviors of Alloy 617 (INCONEL 617) Weldments for High Temperature Applications. Metals, 2016, 6, 100.	2.3	9
18	Understanding Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Weldments at 900 °C. Metals, 2016. 6. 178.	2.3	11

#	Article	IF	CITATIONS
19	Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime. Transactions of the Korean Society of Mechanical Engineers, A, 2016, 40, 565-571.	0.2	2
20	Cyclic Stress Response and Fracture Behaviors of Alloy 617 Base Metal and Weld Joints under LCF Loading. Advances in Materials Science and Engineering, 2015, 2015, 1-11.	1.8	11
21	Low Cycle Fatigue Properties of Alloy 617 base Metal and Weld Joint at Room Temperature. , 2014, 3, 2201-2206.		13
22	Evaluation of Fatigue Life on Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints under Low Cycle Fatigue Loading. Journal of Power System Engineering, 2014, 18, 122-128.	0.4	2
23	Fatigue crack growth and probability assessment for transverse TIG welded Aluminum alloy 6013-t4. Journal of Theoretical and Applied Mechanics, 0, , 179.	0.5	3
24	Reliability Evaluation of Fatigue Crack Growth Rate of Heat-Treated TIG-Welded Al 6013-t4 by Two-Parameter Weibull. Key Engineering Materials, 0, 867, 75-81.	0.4	1