Klaus Six

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2876638/publications.pdf Version: 2024-02-01

KINIC SIV

#	Article	IF	CITATIONS
1	A whole system model framework to predict damage in turnouts. Vehicle System Dynamics, 2023, 61, 871-891.	3.7	7
2	Rail RCF damage quantification and comparison for different damage models. Railway Engineering Science, 2022, 30, 23-40.	4.4	11
3	DEM modelling of railway ballast using the Conical Damage Model: a comprehensive parametrisation strategy. Granular Matter, 2022, 24, 40.	2.2	5
4	Iron Oxide and Water Paste Rheology and Its Effect on Low Adhesion in the Wheel/Rail Interface. Tribology Letters, 2022, 70, 1.	2.6	6
5	Reproducing rolling contact fatigue relevant loading conditions of railway operation on a test rig. Tribology - Materials, Surfaces and Interfaces, 2021, 15, 127-137.	1.4	1
6	The development of a high pressure torsion test methodology for simulating wheel/rail contacts. Tribology International, 2021, 156, 106842.	5.9	19
7	Challenges and progress in the understanding and modelling of the wheel–rail creep forces. Vehicle System Dynamics, 2021, 59, 1026-1068.	3.7	35
8	A new approach for modelling mild and severe wear in wheel-rail contacts. Wear, 2021, 476, 203761.	3.1	17
9	Modelling of Frictional Conditions in the Wheel–Rail Interface Due to Application of Top-of-Rail Products. Lubricants, 2021, 9, 100.	2.9	11
10	Full-scale testing of low adhesion effects with small amounts of water in the wheel/rail interface. Tribology International, 2020, 141, 105907.	5.9	25
11	Vehicle tests showing how the weather in autumn influences the wheel–rail traction characteristics. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 426-435.	2.0	9
12	Assessment of running gear performance in relation to rolling contact fatigue of wheels and rails based on stochastic simulations. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 405-416.	2.0	8
13	Friction and wear in railway ballast stone interfaces. Tribology International, 2020, 151, 106498.	5.9	8
14	Simple particle shapes for DEM simulations of railway ballast: influence of shape descriptors on packing behaviour. Granular Matter, 2020, 22, 43.	2.2	46
15	Improved modelling of trains braking under low adhesion conditions. Tribology - Materials, Surfaces and Interfaces, 2020, 14, 131-141.	1.4	2
16	Shape analysis of railway ballast stones: curvature-based calculation of particle angularity. Scientific Reports, 2020, 10, 6045.	3.3	16
17	Rolling contact fatigue behaviour of rails: Wedge model predictions in T-Gamma world. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 1335-1345.	2.0	3
18	Wheel/Rail Creep Force Model for Wayside Application of Top-of-Rail Products Incorporating Carry-On and Consumption Effects. Lecture Notes in Mechanical Engineering, 2020, , 669-677.	0.4	1

KLAUS SIX

#	Article	IF	CITATIONS
19	Prediction of Maximum Torsional Wheel-Set Axle Vibrations Considering Non-linear Adhesion Characteristics. Lecture Notes in Mechanical Engineering, 2020, , 970-976.	0.4	1
20	Simulation and experiment based investigations of squat formation mechanisms. Wear, 2019, 440-441, 203093.	3.1	4
21	Micro-mechanical investigation of railway ballast behavior under cyclic loading in a box test using DEM: effects of elastic layers and ballast types. Granular Matter, 2019, 21, 106.	2.2	29
22	Advanced maintenance strategies for improved squat mitigation. Wear, 2019, 436-437, 203034.	3.1	8
23	Assessing the impact of small amounts of water and iron oxides on adhesion in the wheel/rail interface using High Pressure Torsion testing. Tribology International, 2019, 135, 55-64.	5.9	26
24	Comparison of two different types of railway ballast in compression and direct shear tests: experimental results and DEM model validation. Granular Matter, 2018, 20, 70.	2.2	32
25	Wheel-rail creep force model for predicting water induced low adhesion phenomena. Tribology International, 2017, 109, 409-415.	5.9	36
26	Friction phenomena and their impact on the shear behaviour of granular material. Computational Particle Mechanics, 2017, 4, 23-34.	3.0	19
27	Plasticity in wheel–rail contact and its implications on vehicle–track interaction. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231, 558-569.	2.0	13
28	Parametrisation of a DEM model for railway ballast under different load cases. Granular Matter, 2017, 19, 64.	2.2	29
29	Modeling wear and rolling contact fatigue: Parametric study and experimental results. Wear, 2016, 366-367, 71-77.	3.1	15
30	Development of white etching layers on rails: simulations and experiments. Wear, 2016, 366-367, 116-122.	3.1	41
31	Modeling surface rolling contact fatigue crack initiation taking severe plastic shear deformation into account. Wear, 2016, 352-353, 136-145.	3.1	43
32	On the effect of stress dependent interparticle friction in direct shear tests. Powder Technology, 2016, 294, 211-220.	4.2	27
33	Classification and Consideration of Plasticity Phenomena in Wheel-Rail Contact Modelling. International Journal of Railway Technology, 2016, 5, 55-77.	0.3	5
34	Physical processes in wheel–rail contact and its implications on vehicle–track interaction. Vehicle System Dynamics, 2015, 53, 635-650.	3.7	34
35	Third body layer—experimental results and a model describing its influence on the traction coefficient. Wear, 2014, 314, 148-154.	3.1	47
36	An approximate model to predict near-surface ratcheting of rails under high traction coefficients. Wear, 2014, 314, 28-35.	3.1	13

KLAUS SIX

#	Article	IF	CITATIONS
37	Automated Measurement of Near-Surface Plastic Shear Strain. International Journal of Railway Technology, 2014, 3, 1-16.	0.3	5
38	Friction in wheel–rail contact: A model comprising interfacial fluids, surface roughness and temperature. Wear, 2011, 271, 2-12.	3.1	42
39	The influence of the wheelsets' relative kinematics of railway vehicles on wheel/rail wear in curved track. Vehicle System Dynamics, 2008, 46, 403-414.	3.7	10
40	An efficient physical-based method for predicting the long-term evolution of vertical railway track geometries. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 0, , 095440972110248.	2.0	6
41	A new hybrid approach to predict worn wheel profile shapes. Vehicle System Dynamics, 0, , 1-17.	3.7	1